Electronic Supporting Information (ESI)

Aggregation Tailored Emission of HBT Derivative: A Photostable

turn on Bioimaging

Ishpreet Kaur,^a Vinay Sharma,^b,^c Shaikh M. Mobin,^{b,c,d} Anjali Khajuria,^e Puja Ohri,^e Paramjit

Kaur,^{a*} and Kamaljit Singh^{a*}

^aDepartment of Chemistry, UGC-Centre of Advanced Study Guru Nanak Dev University,

Amritsar 143005, India

^bDiscipline of Biosciences and Bio-Medical Engineering, ^cDiscipline of Chemistry, ^dDiscipline

of Metallurgy Engineering and Materials Science, Indian Institute of Technology Indore, Simrol,

Khandwa Road, Indore 453552, India

^eDepartment of Zoology, Guru Nanak Dev University, Amritsar 143005, India

E-mail: paramjit19in@yahoo.co.in; kamaljit.chem@gndu.ac.in

Table of content

Fig.S1: ¹H NMR (CDCl₃) spectrum of **3**.

Fig.S2: ¹³C NMR (CDCl₃) spectrum of **3**.

Fig.S3: EI Mass Spectrum of 3.

Fig.S4: FTIR spectrum of 3.

 Table S1: Cartesian coordinates of 3 (THF).

Center	Atomic	Ato	omic	Coordi	nates (Angs	stroms)
Number	Number	Ty	pe	Х	Y	Ζ
1	С	0	-7.5	599359	1.914751	1.126541
2	С	0	-6.7	701392	1.271827	0.268719
3	С	0	-6.2	298340	1.873275	-0.905155
4	С	0	-6.7	787316	3.128774	-1.269173
5	С	0	-7.7	701237	3.785404	-0.422687
6	С	0	-8.1	05841	3.177631	0.775183
7	Н	0	-7.8	892015	1.428451	2.046738
8	Н	0	-5.5	584591	1.321864	-1.503234
9	Н	0	-6.4	465173	3.591555	-2.192665

10	Н	0	-8.085827	4.760550 -0.692052	
11	Н	0	-8.800866	3.682595 1.433294	
12	Ν	0	-6.089516	-0.030708 0.538631	
13	С	0	-4.623497	-0.098228 0.562304	
14	С	0	-3.864940	-0.725993 -0.462573	
15	С	0	-3.947723	0.504423 1.634411	
16	С	0	-2.472352	-0.748482 -0.402164	
17	Н	0	-4.375481	-1.187210 -1.289701	
18	С	0	-2.551946	0.488276 1.688694	
19	Н	0	-4.520674	0.976946 2.420514	
20	С	0	-1.798568	-0.139857 0.680577	
21	Н	0	-1.895991	-1.221635 -1.185504	
22	Н	0	-2.033195	0.947539 2.518858	
23	С	0	-6.990685	-1.054197 -0.008444	
24	С	0	-6.891988	-2.336658 0.573424	
25	С	0	-7.972371	-0.866126 -1.057148	
26	С	0	-7.711063	-3.386238 0.151578	
27	Н	0	-6.179352	-2.497537 1.370138	
28	С	0	-8.789287	-1.934675 -1.447498	
29	Н	0	-8.088507	0.098929 -1.594037	
30	С	0	-8.667888	-3.194404 -0.852403	
31	Н	0	-7.614428	-4.354996 0.624276	
32	Н	0	-9.514683	-1.781762 -2.236274	

33	Н	0	-9.300819 -4.013314 -1.167881
34	С	0	-0.326948 -0.147763 0.759683
35	Ν	0	0.710646 -0.706350 -0.023036
36	С	0	2.129256 -0.517660 0.034132
37	С	0	2.995006 -1.602285 -0.185773
38	С	0	2.651783 0.796265 0.214795
39	С	0	4.372161 -1.403618 -0.167977
40	Н	0	2.602134 -2.589170 -0.367746
41	С	0	4.027575 0.985355 0.194829
42	Н	0	1.976227 1.626871 0.365854
43	С	0	4.911250 -0.109996 0.028372
44	Н	0	4.441877 1.973445 0.341078
45	С	0	8.597597 -0.404808 0.250829
46	С	0	8.800530 0.919949 -0.385346
47	С	0	10.079297 1.432524 -0.614124
48	С	0	11.176263 0.668909 -0.229962
49	С	0	11.013601 -0.592911 0.375571
50	С	0	9.751589 -1.129767 0.615234
51	С	0	6.386572 0.056664 0.001205
52	Н	0	10.221630 2.399815 -1.078889
53	Н	0	12.172431 1.053275 -0.403072
54	Н	0	11.891176 -1.158175 0.657443
55	Н	0	9.636137 -2.098681 1.080676

56	Ν	0	7.276207	-0.788788	0.454524
57	S	0	7.153324	1.658032	-0.800677
58	0	0	5.135558	-2.512650	-0.287314
59	Н	0	6.052563	-2.367919	0.016780

Table S2: Cartesian coordinates of 3 (H₂O).

Center	Atomic	Atom	ic Coordi	inates (Angs	troms)
Number	Number	Туре	Х	Y	Z
	 C		7 865866	1 272/12	0.754628
1	C	0	7.803800	-1.3/2412	0.734028
2	С	0	6.789995	-1.179858	-0.128684
3	С	0	6.562752	-2.109140	-1.159051
4	С	0	7.396492	-3.223947	-1.291645
5	С	0	8.471624	-3.414117	-0.413151
6	С	0	8.704248	-2.481727	0.606390
7	Н	0	8.039859	-0.656396	1.550160
8	Н	0	5.741303	-1.954388	-1.849773
9	Н	0	7.213576	-3.935562	-2.090190
10	Н	0	9.120519	-4.276474	-0.523253
11	Н	0	9.532258	-2.621553	1.293681
12	Ν	0	5.948641	-0.021568	0.009842
13	С	0	4.546720	-0.138562	0.030114
14	С	0	3.725590	0.946015	-0.371961

15	С	0	3.921745	-1.336719	0.451055
16	С	0	2.343925	0.835421	-0.345953
17	Н	0	4.183838	1.866193	-0.712445
18	С	0	2.536536	-1.441008	0.470937
19	Н	0	4.527681	-2.174466	0.771727
20	С	0	1.713867	-0.362125	0.078030
21	Н	0	1.727112	1.668900	-0.664500
22	Н	0	2.070526	-2.361352	0.807098
23	С	0	6.585215	1.261712	0.143925
24	С	0	6.232840	2.125525	1.195695
25	С	0	7.584935	1.646504	-0.765408
26	С	0	6.865266	3.366101	1.323706
27	Н	0	5.472011	1.823148	1.906774
28	С	0	8.223707	2.882345	-0.621935
29	Н	0	7.854817	0.980041	-1.577083
30	С	0	7.864461	3.748858	0.418901
31	Н	0	6.586724	4.026178	2.138704
32	Н	0	8.994229	3.171153	-1.329325
33	Н	0	8.358139	4.709018	0.524967
34	С	0	0.279618	-0.503692	0.121587
35	Ν	0	-0.639654	0.317993	-0.170593
36	С	0	-2.033702	0.143994	-0.102754
37	С	0	-2.837378	1.219769	-0.494752
38	С	0	-2.634786	-1.058909	0.343459

39	С	0	-4.231637	1.119997	-0.449322
40	Н	0	-2.382946	2.140969	-0.836654
41	С	0	-4.014685	-1.158699	0.389466
42	Н	0	-2.004359	-1.886809	0.644466
43	С	0	-4.849789	-0.085646	0.000268
44	Η	0	-4.466860	-2.083407	0.733156
45	С	0	-8.448931	0.533646	-0.193974
46	С	0	-8.743775	-0.761576	0.292821
47	С	0	-10.057193	-1.194512	0.468589
48	С	0	-11.090297	-0.305353	0.147547
49	С	0	-10.809615	0.986414	-0.337782
50	С	0	-9.493432	1.415176	-0.512010
51	С	0	-6.291148	-0.166130	0.043696
52	Н	0	-10.277900	-2.187542	0.841851
53	Н	0	-12.120253	-0.619702	0.275963
54	Н	0	-11.627374	1.656401	-0.579128
55	Н	0	-9.264729	2.406885	-0.884720
56	N	0	-7.086309	0.820014	-0.315663
57	S	0	-7.200221	-1.671961	0.615995
58	0	0	-4.969116	2.204714	-0.845039
59	Н	0	-5.954667	1.983288	-0.756796

Reference:

M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford CT, 2010.