Supporting Information

High Efficiency Dye-sensitized Solar Cells with $V_{\text{OC}}\text{-}J_{\text{SC}}$ Trade off Eradication

by Interfacial Engineering of Photoanode|electrolyte Interface

Anantharaj Gopalraman ^{a,b*}, Subbian karuppuchamy ^c, Saranyan Vijayaraghavan ^{a,b*}

^a Corrosion and Materials Protection Division ,CSIR-Central Electrochemical Research Institute, Karaikudi, Tamil Nadu, India, 630003.

^b Academy of Scientific and Innovative Research

^c Department of Energy Science, Alagappa University, Karaikudi, Tamilnadu, India, 630003.

*Corresponding Author: E-mail: anantharaj.che@gmail.com, saranyan@cecri.res.in..

Fig. S1. XRD pattern of TiO_2 nanoparticles. The peaks are well matched with the standard ICDD reference pattern (00-001-0562)

Fig. S2. J-V characteristics of DSSC sensitized OA alone under the illumination of 100 mW/cm^2 .

Fig. S3. IPCE spectrum of DSSCs as a function of wavelength for the standard device and OA modified device (a) and the integrated current density spectra.

Fig. S4. UV-Vis spectrum of C 106 dye solution in DMF.

Fig. S5. FT-IR spectra of C106, $TiO_2/C106$, $TiO_2/C106/OA$, OA and TiO_2/OA .

Fig. S6. V_{OC} decay profile of DSSCs

Fig. S7. Variation steady state electron density as a function of applied potentials under dark condition.

Scheme. S1. Equivalent circuit (Transmission line model) used for fitting the impedance data. Rs-total series resistance, R_{pt} , R_{ct} , R_t and C_p are the charge transfer resistance at platinum/electrolyte interface, recombination resistance at the photoanode/electrolyte interface, electron transport resistance in TiO₂ network and chemical capacitance at the photoanode/electrolyte interface, respectively. Z_d is the Warburg diffusion element.