Supporting Information

A chemosensor with paddle structure based on BODIPY chromophore for sequential recognition of Cu²⁺ and HSO₃⁻

Shengling Li^a, Duanlin Cao^a, Zhiyong Hu^{ab}, Zhichun Li^a, Xianjiao Meng^a,

Xinghua Han^{ab}, Wenbing Ma^{* ab}

Email: <u>mawenbing@nuc.edu.cn;</u>

^a School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, P.R. China

^b National Demonstration Center for Experimental Comprehenisve Chemical Engineering Education

CONTENTS

PAGE

1. ¹ H NMR spectra of sensor ML	.3
2. ¹³ C NMR spectra of sensor ML	.3
3. ESI-MS spectra of sensor ML	.4
4. Fluorescence intensity of sensor ML towards Cu ²⁺ -selective sensor	.4
5. Calculation of binding constant Ka	.5
6. Determination of detection Limit of Cu ²⁺	.5
7. Fluorescence intensity of ML-Cu ²⁺ towards HSO ₃ ⁻ -selective sensor	.6
8. Determination of detection Limit of HSO ₃ ⁻	.6
9. ¹ H NMR titration spectra of sensor ML to Cu ²⁺	.7
10. ESI-MS spectra of ML -Cu ²⁺	.7

1. ¹H NMR spectra of sensor ML

Fig.S1. ¹H NMR spectra of sensor ML

2. ¹³C NMR spectra of sensor ML

Fig.S2. ¹³C NMR spectra of sensor ML

3. ESI-MS spectra of sensor ML

4. Fluorescence intensity of sensor ML towards Cu²⁺ -selective sensor

Fig. S4. Fluorescence intensity of sensor ML (5 μ M) with selected cations (10 equiv.) in the absence (black bars) or presence (red bars) of Cu²⁺ (10 equiv.).

5. Calculation of binding constant Ka

Fig. S5. The Benesi-Hilderbrand plot of sensor ML with Cu²⁺. Linear Equation: $Y=6.72\times10^{-9}$ X+1.14×10⁻⁴, R²=0.99675, K=1.70×10⁴M⁻¹.

6. Determination of detection Limit of Cu²⁺

Fig. S6. Plot of the intensity at 475 nm for a mixture of sensor ML and Cu²⁺ in CH₃OH/H₂O (99:1 v/v) system in the range 0~0.9 equiv. Linear Equation: Y=-1.23×10⁸X+2012, R²=0.99239. The calculated detection limit of sensor ML is 0.36 μM.

7. Fluorescence intensity of ML-Cu²⁺ towards HSO_3^- -selective sensor

Fig. S7. Fluorescence intensity of ML-Cu²⁺ (5 μ M) with selected anions (10 equiv.) in the absence (red bars) or presence (black bars) of HSO₃⁻ (10 equiv.).

8. Determination of detection Limit of HSO₃⁻

Fig. S8. Plot of the intensity at 475 nm for a mixture of ML-Cu²⁺ and HSO₃⁻ in CH₃OH/H₂O (99:1 v/v) system in the range 5.0~20 equiv. Linear Equation: Y=4.59×10⁶X+163.20, R²=0.99911. The detection limit of ML- Cu²⁺ is 1.4 μM.

9. ¹H NMR titration spectra of sensor **ML** to Cu²⁺

10. ESI-MS spectra of **ML**-Cu²⁺

Fig. S10. ESI-MS spectra of ML-Cu²⁺