Supporting information for:

## Collective Absorption of 2,4,6-Trinitrotoluene into Lipid Membranes and Its Effects on Bilayer Properties. A Computational Study

Hong Yang,<sup>†,‡</sup> Mi Zhou,<sup>‡</sup> Huarong Li,<sup>‡</sup> Liu Liu,<sup>‡</sup> Yang Zhou,<sup>‡,\*</sup> Xinping Long<sup>‡</sup>

<sup>+</sup> School of Material Science and Engineering, Tsinghua University, Beijing 100084, China;

<sup>‡</sup> Institute of Chemical Materials, China Academy of Engineering and

Physics, Mianyang 621900, China.

\*To whom Correspondence should be addressed: zhouy@caep.cn (Y. Zhou)



**Figure S1.** The number of TNT molecules contained in the largest aggregate with the simulation time for (a) TNT-10 system, and (b) TNT-40 system.

Table S1. The area per lipid and thickness of membrane in different systems.

| • •                |                | <u>,</u>           |
|--------------------|----------------|--------------------|
| System             | Thickness [nm] | Area per lipid [Ų] |
| Pure POPC membrane | 3.89 (±0.06)   | 64.7 (±1.2)        |
| TNT-10 system      | 3.88 (±0.07)   | 65.9 (±1.5)        |
| TNT-40 system      | 3.84 (±0.06)   | 65.6 (±1.3)        |



**Figure S2.** Interaction energy decomposition [electrostatic interaction (ES) and van der Waals interactions (VDW)] of the incoming TNT with the remaining TNT molecules in (a) TNT-10 system, and (b) TNT-40 system, as a function of the distance from the bilayer center.



**Figure S3.** Interaction energy of the incoming TNT with solvent molecules in different systems, as a function of the distance from the bilayer center.



**Figure S4.** Deuterium order parameters ( $-S_{CD}$ ) of POPC lipids with various TNT concentrations as a function of simulation time.