Supporting Information

Near-infrared turn-on fluorescent probe for discriminative

detection of Cys and application in vivo imaging

Shaolong Qi,^{a†} Lubao Zhu,^{b†} Xinyu Wang,^a Jianshi Du,^{*a} Qingbiao Yang,^{*b} and Yaoxian Li^b

^{a.} China-Japan Union Hospital of Jilin University, Key Laboratory of Lymphatic Surgery Jilin Province, Engineering Laboratory of Lymphatic Surgery Jilin Province, Changchun 130031, P. R. China

^{b.} College of Chemistry, Jilin University, Changchun, 130021, China

† These two authors equally contribute to this paper

Table of Contents

Fig. S1 Absorption of NIRHA in the presence of 4.8 eq Cys, 480 eq GSH and 48 eq other interfering substance.

Fig. S2 Fluorescence of NIRHA in the presence of various interfering substance: 480 eq GSH and 48 eq other competitive substance. Fluorescence of NIRHA in the presence of 4.8 eq Cys, 480 eq GSH and 48 eq other competitive analytes.

Fig. S3 Cell viability of NIRHA via the standard MTT assay of HeLa cells.

Fig. S4 fluorescence signal of compound 2.

Fig. S5 HR-MS spectrum of released compound 2.

Fig. S6 HR-MS spectrum of released seven-membered ring compound.

Fig. S7 HR-MS spectrum of probe NIRHA.

Fig. S8 ¹H NMR of probe NIRHA.

Fig. S9 ¹C NMR of probe NIRHA.

Fig. S10 ¹H NMR of compound 2.

Fig. S11 HR-MS spectrum of compound 2.

Table S1 Comparison of the representative Cys probes with the present work¹⁻⁷.

References

Fig. S1 Absorption of NIRHA in the presence of 4.8 eq Cys, 480 eq GSH and 48 eq other interfering substance.

Fig. S2 Fluorescence of NIRHA in the presence of various interfering substance: 480 eq GSH and 48 eq other

competitive substance. Fluorescence of NIRHA in the presence of 4.8 eq Cys, 480 eq GSH and 48 eq other competitive analytes.

Fig. S3 Cell viability of NIRHA via the standard MTT assay of HeLa cells.

Fig. S4 fluorescence signal of compound 2.

Mass Spectrum SmartFormula Report

Analysis Info

Analysis Name Method Sample Name Comment

lc-ms-hr-low.m

zlb2

Acquisition Date 2019/5/28 15:16:49 C:\Users\ÇàÄê\Desktop\°ëë×°±Ëá\±íÕ+ÊÖ¶Î\· ´Ó¦Ö®°óµÄ·Ö×ÓÁ¿ÖÊÆ×-»úÀíÑĐ¾¿ Operator zlwei

Instrument / Ser# micrOTOF-Q II 10351

Fig. S5 HR-MS spectrum of released compound 2.

Fig. S6 HR-MS spectrum of released seven-membered ring compound.

Mass Spectrum SmartFormula Report

Analysis Info

Analysis Name C:\Users\Admir Method Ic-ms-hr-low.m Sample Name ZLB

Acquisition Date 2019/3/26 15:21:28 C:\Users\Administrator.USER-20150311RQ\Desktop\ZLB_P1-F-1_01_11110.d Ic-ms-hr-low.m Operator zlwei

Instrument / Ser# micrOTOF-Q II 10351

Fig. S7 HR-MS spectrum of probe NIRHA.

Fig. S8 ¹H NMR of probe NIRHA.

Fig. S9 ¹C NMR of probe NIRHA.

Fig. S10 ¹H NMR of compound 2.

Mass Spectrum SmartFormula Report

Analysis Info

Acquisition Date 2018/12/5 11:28:02 Analysis Name C:\Users\Administrator.USER-20150311RQ\Desktop\LQ4_P 1-F-4_01_9730.d Method lc-ms-hr-low.m Operator zlwei Instrument / Ser# micrOTOF-Q II 10351 Sample Name LQ4

Fig. S11 HR-MS spectrum of compound 2

Table S1. Comparison of the representative Cys probes with the present work¹⁻⁷.

Previous literatures	Solvent system	LOD	time	λex/λem
Angewandte Chemie International	PBS	0.13 µM	10 min	470/585 nm
Edition, 2011, 50 , 10690-10693				
Chemical Communications, 2012, 48,	EtOH/PBS = 2:8	0.11 uM	9 min	304/ 487 nm
8341-8343				
Sensors and Actuators B: Chemical,	$C_2H_5OH/PBS =$	0.12 μΜ	30 min	570/615 nm
2019, 290 , 47-52	1:99			
Analytical Chemistry, 2015, 87, 4856-	$DMSO/H_2O =$	0.16 µM	5 min	670 /697 nm
4863	1:19			
RSC Advances, 2017, 7 , 18867-18873	CAN/ HEPES =	0.158 µM	90 min	470/565 nm
	2:8			
Sensors and Actuators B: Chemical,	PBS/DMSO = 4/1	0.122 μM	5 min	445/500 nm
2018, 267 , 76-82				
Sensors and Actuators B: Chemical,	$H_2O/CH3CN =$	2.31 µM	10 min	370/464 nm
2019, 298 , 126844	3/1			
This work	PBS/DMF =99:1	0.0776 µM	15 min	650/710 nm

References:

- 1. X. Yang, Y. Guo and R. M. Strongin, *Angewandte Chemie International Edition*, 2011, **50**, 10690-10693.
- 2. H. Wang, G. Zhou, H. Gai and X. Chen, *Chemical Communications*, 2012, 48, 8341-8343.
- 3. S. Jiao, X. He, L. Xu, P. Ma, C. Liu, Y. Huang, Y. Sun, X. Wang and D. Song, *Sensors and Actuators B: Chemical*, 2019, **290**, 47-52.
- 4. J. Zhang, J. Wang, J. Liu, L. Ning, X. Zhu, B. Yu, X. Liu, X. Yao and H. Zhang, *Analytical Chemistry*, 2015, **87**, 4856-4863.
- 5. J. Guo, Z. Kuai, Z. Zhang, Q. Yang, Y. Shan and Y. Li, *RSC Advances*, 2017, 7, 18867-18873.
- 6. X. Xie, C. Yin, Y. Yue and F. Huo, Sensors and Actuators B: Chemical, 2018, 267, 76-82.
- J. Chao, M. Li, Y. Liu, Y. Zhang, F. Huo and C. Yin, Sensors and Actuators B: Chemical, 2019, 298, 126844.