Supplementary Information

Effects of size on the photocatalytic property of high-index faceted pseudocubic and rhombohedral $\alpha-\mathrm{Fe}_{2} \mathrm{O}_{3}$ nanocrystals
${ }^{\text {a }}$ Ministry Key Laboratory of Oil and Gas Fine Chemicals, College of the Chemistry and Chemical Engineering, Xinjiang University, Urumqi 830046, China.
${ }^{\mathrm{b}}$ Guangdong Provincial Key Laboratory of Petrochemcial Pollution Processes and Control, School of E nvironmental Science and Engineering, Guangdong University of Petrochemical Technology, Maomin g, Guangdong 525000, China
${ }^{\text {c The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of }}$ Education), School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.

*Corresponding author:

Email: jerryyang1924@163.com

Quantum yield calculation

$$
\text { initial rate of } \mathrm{O}_{2} \text { production }\left(\mathrm{mol} \mathrm{~s}^{-1}\right)
$$

$\Phi=4 \times$
photo flux ($\mathrm{mol} \mathrm{s}^{-1}$)
(4 photons absorbed per O_{2}).

Taking the $\mathrm{Fe}_{2} \mathrm{O}_{\mathbf{3}}$-6.0 as an example

Using a wavelength of 420 nm , the intensity of light measured at $100 \mathrm{~mW} / \mathrm{cm}^{2}$, impinging on $7 \mathrm{~cm}^{2}$
surface area. O_{2} released at the 2 min reaction time was used for determining.

Energy of a single photon at $420 \mathrm{~nm}=\mathrm{h} . \mathrm{c} / \mathrm{l}=6.626 \times 10^{-34} \times 2.998 \times 10^{8} /\left(420 \times 10^{-9}\right)=4.730 \times 10^{-19} \mathrm{~J}$

Total power absorbed $=7 \mathrm{~cm}^{2} \times 100 \mathrm{~mW} / \mathrm{cm}^{2} \times 2 \times 60 \mathrm{~s}=84 \mathrm{~J}$

Number of O_{2} molecules produced $=7.32 \mu \mathrm{~mol} \times 6.022 \times 10^{23}=4.41 \times 10^{18}$

Quantum Yield $\mathrm{O}_{2}=4.41 \times 10^{18} /\left(84 \mathrm{~J} / 4.73 \times 10^{-19} \mathrm{~J}\right) \times 400 \%=9.93 \%$

Turn over Frequency calculation

Taking the $\mathrm{Fe}_{2} \mathrm{O}_{3}-6.0$ as an example

Moles of $\mathrm{Fe}=2 \times 5 \mathrm{mg} / 159.6882 \mathrm{~g} \mathrm{~mol}^{-1}=6.26 \times 10^{-5} \mathrm{~mol}$

The production of $\mathrm{O}_{2}=7.32 \mu \mathrm{~mol}(2 \mathrm{~min})$
$\mathrm{TOF}=7.32 \mu \mathrm{~mol} / 6.26 \times 10^{-5} \mathrm{~mol} / 120 \mathrm{~s}$
$\mathrm{TOF}=0.97 \times 10^{-3} \mathrm{~mol}\left(\mathrm{O}_{2}\right) / \mathrm{mol}(\mathrm{Fe}) \mathrm{s}$

TOF for other catalysts were determined similarly.

The computational process of the valence band and conduction band of $\alpha-\mathrm{Fe}_{2} \mathrm{O}_{3}$:

$$
\begin{aligned}
& E_{C B}=X-E_{C}-\frac{1}{2} E_{g} \\
& X=\sqrt[x+y]{X_{F e}{ }^{x} \times X_{O}{ }^{y}} \\
& =\sqrt[5]{4.06^{2} \times 7.54^{3}} \\
& =5.886 \mathrm{eV}
\end{aligned}
$$

Taking the $\mathrm{Fe}_{2} \mathrm{O}_{3}$-6.0 as an example

$E_{g}=1.964 \mathrm{eV}$
$E_{C B}=5.886-4.5-0.5 \times 1.964$
$=0.404 \mathrm{eV}$
$E_{V B}=E_{C B}+E_{g}$
$=0.404+1.964$
$=2.368 \mathrm{eV}$

