Excited-state locked amino analogues of the Green Fluorescent Protein chromophore with a giant Stokes shift
Snizhana O. Zaitseva, ${ }^{1}$ Dilara A. Farkhutdinova ${ }^{2}$, Nadezhda S. Baleeva, ${ }^{1}$ Alexander Yu. Smirnov, ${ }^{1}$ Marina B. Zagudaylova, ${ }^{1}$ Aleksander M. Shakhov ${ }^{3}$, Artyom A. Astafiev ${ }^{3,2}$, Mikhail S. Baranov, ${ }^{* 1,4}$ and Anastasia V. Bochenkova ${ }^{* 2}$

ELECTRONIC SUPPLEMENTARY INFORMATION

Contents

1. Solvatochromic properties of the synthesized compounds
 S2

2. Synthesis S7
3. X-Ray results S21
4. Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra S22
5. Computational results S71
[^0]
1. Solvatochromic properties of the synthesized compounds

UV-VIS spectra were recorded with a Varian Cary 100 spectrophotometer. Fluorescence excitation and emission spectra were recorded with Agilent Cary Eclipse fluorescence spectrophotometer. The fluorescence quantum yield of compounds were measured according to the approaches presented in literature ${ }^{5}$.

Quantum yield was calculated by the formula:

$$
\begin{equation*}
\Phi_{\mathrm{x}}=\Phi_{\mathrm{st}} \times \frac{F_{x}}{F_{s t}} \times \frac{f_{s t}}{f_{x}} \times \frac{n_{x}^{2}}{n_{s t}^{2}} \tag{1}
\end{equation*}
$$

F is the area under the emission peak, f is the absorption factor, n is the refractive index of the solvent, the subscript x - the test substance, the subscript $s t$ - standard and Φ is the quantum yield.

$$
\begin{equation*}
f=1-10^{-A} \tag{2}
\end{equation*}
$$

A is absorbance at the excitation wavelength.

[^1]Table S1. Optical properties of non-locked compounds $\mathbf{4}$ and their locked analogues $\mathbf{8}$ in acetonitrile.

Ar		Abs $^{\mathbf{a}}$	$\mathbf{E m}^{\mathbf{b}}$
Ph	$\mathbf{4 a}$	$356(9000)$	400
	$\mathbf{8 a}$	$348(10500)$	480
pOMe-C $_{6} \mathrm{H}_{4}$	$\mathbf{4 b}$	$360(12000)$	413
	$\mathbf{8 b}$	$352(13500)$	468
$\mathrm{pCl}^{2}-\mathrm{C}_{6} \mathrm{H}_{4}$	$\mathbf{4 c}$	$363(9500)$	385
	$\mathbf{8 c}$	$353(10000)$	490
pBr-C${ }_{6} \mathrm{H}_{4}$	$\mathbf{4 d}$	$363(8500)$	387
	$\mathbf{8 d}$	$353(9000)$	490
pCOOMe-C${ }_{6} \mathrm{H}_{4}$	$\mathbf{4 e}$	$379(8000)$	410
	$\mathbf{8 e}$	$365(7500)$	521
Pyridin-4-yl	$\mathbf{4 f}$	$373(6500)$	400
	$\mathbf{8 f}$	$362(6500)$	505

a - peak maximum in nm and extinction coefficient in $(\mathrm{M} \mathrm{cm})^{-1} ; \mathrm{b}$ - peak maximum in nm

Table S2. Optical properties of $\mathbf{8 a - g}$ in various solvents.

	Ar		Dioxane	EtOAc	$\mathrm{CH}_{3} \mathrm{CN}$	MeOH	$\mathrm{H}_{2} \mathrm{O}$
8a	Ph	Abs ${ }^{\text {a }}$	351 (10500)	352 (10000)	348 (10500)	341 (9500)	338 (11000)
		Em ${ }^{\text {b }}$	460 (9.3)	470 (4.5)	480 (2.8)	472 (1.9)	470 (0.4)
8b	pOMe-C6 H_{4}	Abs ${ }^{\text {a }}$	351 (13000)	353 (12000)	352 (13500)	343 (12000)	343 (14000)
		Em ${ }^{\text {b }}$	456 (18)	461 (9.7)	468 (5.1)	460 (3.8)	468 (0.5)
8c	$\mathrm{pCl}-\mathrm{C}_{6} \mathrm{H}_{4}$	Abs $^{\text {a }}$	355 (9500)	360 (8500)	353 (10000)	349 (9500)	346 (10500)
		Em ${ }^{\text {b }}$	431 (18)	470 (6.2)	490 (2.7)	483 (1.1)	481 (0.3)
8d	$\mathrm{pBr}-\mathrm{C}_{6} \mathrm{H}_{4}$	$\mathrm{Abss}^{\text {a }}$	361 (9000)	361 (9500)	353 (9000)	350 (8000)	346 (10500)
		Em ${ }^{\text {b }}$	431 (18)	470 (6.9)	490 (2.4)	482 (0.9)	481 (0.2)
8e	pCOOMe-C6 H_{4}	$\mathrm{Abs}^{\text {a }}$	368 (7000)	372 (7000)	365 (7500)	359 (7000)	349 (8500)
		Em ${ }^{\text {b }}$	430 (22)	466 (6.5)	521 (1.7)	517 (0.5)	${ }^{\text {c }}$
$8 f$	Pyridin-4-yl	$\mathrm{Abs}^{\text {a }}$	370 (6000)	370 (6500)	362 (6500)	361 (6500)	348 (6500)
		Em ${ }^{\text {b }}$	430 (20)	465 (5.8)	505 (1.2)	${ }^{\text {c }}$	${ }^{\text {c }}$
8g	$\mathrm{pOH}-\mathrm{C}_{6} \mathrm{H}_{4}$	$\mathrm{Abs}^{\text {a }}$	352 (8000)	352 (7000)	351 (8500)	350 (8000)	344 (8500)
		Em ${ }^{\text {b }}$	448 (10)	458 (7.1)	466 (3.6)	458 (2.2)	461 (0.4)

a - peak maximum in nm and extinction coefficient in $(\mathrm{M} \mathrm{cm})^{-1} ; \mathrm{b}$ - peak maximum in nm and fluorescence quantum yield in \%; c - non fluorescent.

Figure S1 Absorbance (left) and emission (right) spectra of $\mathbf{8 a}, \mathbf{c}, \mathbf{f}, \mathbf{g}$ in acetonitrile. Emission spectra are recorded at an excitation wavelength of 340 nm .

Figure S2 Absorbance (left) and emission (right) spectra of $\mathbf{8 a}(\mathrm{Ar}=\mathrm{Ph})$ in various solvents. Emission spectra are recorded at an excitation wavelength of 340 nm .

Figure S3 Absorbance (left) and emission (right) spectra of $\mathbf{8 b}\left(\mathrm{Ar}=\mathrm{pOMe}-\mathrm{C}_{6} \mathrm{H}_{4}\right)$ in various solvents. Emission spectra are recorded at an excitation wavelength of 340 nm .

Figure S4 Absorbance (left) and emission (right) spectra of $\mathbf{8 c}\left(\mathrm{Ar}=\mathrm{pCl}-\mathrm{C}_{6} \mathrm{H}_{4}\right)$ in various solvents. Emission spectra are recorded at an excitation wavelength of 340 nm .

Figure S5 Absorbance (left) and emission (right) spectra of $\mathbf{8 d}\left(\mathrm{Ar}=\mathrm{pBr}-\mathrm{C}_{6} \mathrm{H}_{4}\right)$ in various solvents. Emission spectra are recorded at an excitation wavelength of 340 nm .

Figure S6 Absorbance (left) and emission (right) spectra of $\mathbf{8 e}\left(\mathrm{Ar}=\mathrm{pCOOMe}-\mathrm{C}_{6} \mathrm{H}_{4}\right)$ in various solvents. Emission spectra are recorded at an excitation wavelength of 340 nm .

Figure S7 Absorbance (left) and emission (right) spectra of $\mathbf{8 f}(\mathrm{Ar}=$ Pyridin-4-yl) in various solvents. Emission spectra are recorded at an excitation wavelength of 340 nm .

Figure S8 Absorbance (left) and emission (right) spectra of $\mathbf{8 g}\left(\mathrm{Ar}=\mathrm{pOH}-\mathrm{C}_{6} \mathrm{H}_{4}\right)$ in various solvents. Emission spectra are recorded at an excitation wavelength of 340 nm .

Figure S9 Absorption spectra of $\mathbf{8 g}\left(\mathrm{Ar}=\mathrm{pOH}-\mathrm{C}_{6} \mathrm{H}_{4}\right)$ in neutral and anionic forms (in water buffer solutions).

Table S3. Optical properties of non-locked compounds $\mathbf{7}$ and their locked analogues $\mathbf{9}$ in acetonitrile.

Ar		Abs $^{\mathbf{a}}$	$\mathbf{E m}^{\mathbf{b}}$
Ph	7a	$458(9500)$	515
	9a	$419(7000)$	501
pOMe-C $_{6} \mathrm{H}_{4}$	7b	$461(10500)$	~ 540
	9b	$410(9000)$	533
pCl-C $_{6} \mathrm{H}_{4}$	7c	$465(10500)$	~ 540
	9c	$422(7500)$	$510 ; 545$
pBr-C $_{6} \mathrm{H}_{4}$	7d	$466(9000)$	~ 550
	9d	$423(7000)$	$511 ; 543$
pCOOMe-C6 H_{4}	7e	$476(9500)$	~ 560
	9e	$440(6000)$	~ 562

a - peak maximum in nm and extinction coefficient in $\left(\mathrm{M} \mathrm{cm}^{-1} ; \mathrm{b}\right.$ - peak maximum in nm
Table S4. Optical properties of 9a-e in various solvents

	Ar		Dioxane	EtOAc	$\mathrm{CH}_{3} \mathrm{CN}$	MeOH	$\mathrm{H}_{2} \mathrm{O}$
9a	Ph	$\mathrm{Abs}^{\text {a }}$	426 (7000)	426 (8000)	419 (7000)	409 (7000)	402 (7500)
		Em ${ }^{\text {b }}$	510 (62)	502 (30)	501 (25)	498 (30)	498 (30)
9b	pOMe- $\mathrm{C}_{6} \mathrm{H}_{4}$	$\mathrm{Abs}^{\text {a }}$	402 (9000)	411 (8500)	410 (9000)	416 (7500)	398 (9500)
		$E m^{\text {b }}$	530 (43)	532 (34)	533 (23)	528 (23)	495 (13)
9c	$\mathrm{pCl}-\mathrm{C}_{6} \mathrm{H}_{4}$	$\mathrm{Abs}^{\text {a }}$	425 (8000)	423 (7000)	422 (7500)	414 (6500)	406 (7000)
		$E m^{\text {b }}$	518; 550 (16)	512; 547 (15)	510; 545 (12)	510; 542 (11)	535 (4.2)
9d	$\mathrm{pBr}-\mathrm{C}_{6} \mathrm{H}_{4}$	$\mathrm{Abs}^{\text {a }}$	429 (7500)	427 (7000)	423 (7000)	420 (6500)	408 (7000)
		Em ${ }^{\text {b }}$	520; 552 (13)	512; 548 (11)	512; 547 (10)	511; 543 (8.3)	~530 (3.7)
9e	pCOOMe-C6 H_{4}	$\mathrm{Abs}^{\text {a }}$	445 (6000)	442 (6000)	440 (6000)	434 (5500)	423 (6000)
		Em ${ }^{\text {b }}$	542 (6.0)	538 (6.0)	545 (5.6)	~562 (2.1)	$-^{\text {c }}$

a - peak maximum in nm and extinction coefficient in $(\mathrm{M} \mathrm{cm})^{-1} ; \mathrm{b}$ - peak maximum in nm and fluorescence quantum yield in \%; c - non fluorescent.

Figure S10 Absorbance (left) and emission (right) spectra of 9a-c,e in acetonitrile. Emission spectra are recorded at an excitation wavelength of 400 nm .

Figure S11 Absorbance (left) and emission (right) spectra of $\mathbf{9 a}(\mathrm{Ar}=\mathrm{Ph})$ in various solvents. Emission spectra are recorded at an excitation wavelength of 400 nm .

Figure S12 Absorbance (left) and emission (right) spectra of $\mathbf{9 b}\left(\mathrm{Ar}=\mathrm{pOMe}-\mathrm{C}_{6} \mathrm{H}_{4}\right)$ in various solvents. Emission spectra are recorded at an excitation wavelength of 400 nm .

Figure S13 Absorbance (left) and emission (right) spectra of $\mathbf{9 c}\left(\mathrm{Ar}=\mathrm{pCl}^{-} \mathrm{C}_{6} \mathrm{H}_{4}\right)$ in various solvents. Emission spectra are recorded at an excitation wavelength of 400 nm .

Figure S14 Absorbance (left) and emission (right) spectra of $\mathbf{9 d}\left(\mathrm{Ar}=\mathrm{pBr}-\mathrm{C}_{6} \mathrm{H}_{4}\right)$ in various solvents. Emission spectra are recorded at an excitation wavelength of 400 nm .

Figure S15 Absorbance (left) and emission (right) spectra of $\mathbf{9 e}\left(\mathrm{Ar}=\mathrm{pCOOMe}-\mathrm{C}_{6} \mathrm{H}_{4}\right)$ in various solvents. Emission spectra are recorded at an excitation wavelength of 400 nm .

2. Synthesis

Commercially available reagents were used without additional purification. E. Merck Kieselgel 60 was used for column chromatography. Thin layer chromatography (TLC) was performed on silica gel $60 \mathrm{~F}_{254}$ glass-backed plates (MERCK). Visualization was effected by UV light (254 or 312 nm) and staining with KMnO_{4}.

NMR spectra were recorded on a 700 MHz Bruker Avance III NMR at $303 \mathrm{~K}, 800 \mathrm{MHz}$ Bruker Avance III NMR at 333 K and Bruker Fourier 300. Chemical shifts are reported relative to residue peaks of $\mathrm{CDCl}_{3}\left(7.27 \mathrm{ppm}\right.$ for ${ }^{1} \mathrm{H}$ and 77.0 ppm for $\left.{ }^{13} \mathrm{C}\right)$ or $\mathrm{DMSO}_{-} \mathrm{d}_{6}(2.51 \mathrm{ppm}$ for ${ }^{1} \mathrm{H}$ and 39.5 ppm for ${ }^{13} \mathrm{C}$). Melting points were measured on a SMP 30 apparatus. Highresolution mass spectra (HRMS) spectra were recorded on a LTQ Orbitrap Elite (ThermoFisher Scientific, USA) equipped with a dual-nebulizer ESI source.

General method for the preparation of mehyl arylimidate hydrochlorides (3a-f):

The solution of corresponding nitrile (0.02 mol) in 8 mL of dry dichloromethane and 1 $\mathrm{mL}(0.025 \mathrm{~mol})$ of methanol was cooled to $0^{\circ} \mathrm{C}$. Dry hydrogen chloride was bubbled through the mixture for 2-3 hours (precipitate formation indicates completion of the reaction) while being intensely stirred; the temperature was maintained within $0-5^{\circ} \mathrm{C}$. Then the reaction mixture was stirred at room temperature for 20 h . Afterwards 20 mL of diethyl ether were added, precipitate was filtered, washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$ and dried under vacuum.

Methyl benzimidate hydrochloride (3a)

White solid ($15.41 \mathrm{~g}, 90 \%$); ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, 303 \mathrm{~K}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 12.84(\mathrm{~s}, 1 \mathrm{H})$, $12.11(\mathrm{~s}, 1 \mathrm{H}), 8.43(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.60(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{6}$

Methyl 4-methoxybenzimidate hydrochloride (3b)
White solid ($3.62 \mathrm{~g}, 87 \%$) ; ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, 303 \mathrm{~K}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 12.42$ (s, 1H), $11.71(\mathrm{~s}, 1 \mathrm{H}), 8.42(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.53(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}){ }^{7}$

Methyl 4-chlorobenzimidate hydrochloride (3c)
White solid ($3.13 \mathrm{~g}, 76 \%$); ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, 303 \mathrm{~K}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 12.78$ (s, 1H), $12.07(\mathrm{~s}, 1 \mathrm{H}), 8.35(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.55(\mathrm{~s}, 3 \mathrm{H}) .{ }^{8}$

[^2]

Methyl 4-bromobenzimidate hydrochloride (3d)

White solid ($4.17 \mathrm{~g}, 83 \%$); $\mathrm{mp}=186-188{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, 303 \mathrm{~K}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}$ $12.86(\mathrm{~s}, 1 \mathrm{H}), 12.14(\mathrm{~s}, 1 \mathrm{H}), 8.28(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.56(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, 303 \mathrm{~K}$, DMSO-d $_{6}$) $\delta \mathrm{ppm} 171.2,132.7,131.6,131.0,123.7,61.5$; HRMS (ESI) m/z: 213.9863 found (calcd for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{BrNO},[\mathrm{M}-\mathrm{Cl}]^{+} 213.9862$).

Methyl 4-(imino(methoxy)methyl)benzoate hydrochloride (3e)

White solid ($3.81 \mathrm{~g}, 83 \%$); $\mathrm{mp}=190-193{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, 303 \mathrm{~K}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}$ 13.05 ($\mathrm{s}, 1 \mathrm{H}$), 12.33 (s, 1H), 8.47 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 8.21 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 4.60 ($\mathrm{s}, 3 \mathrm{H}$), 3.96 (s, 3 H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, 303 \mathrm{~K}$, DMSO-d 6) $\delta \mathrm{ppm}$ 171.1, 165.4, 136.2, 130.1, 129.7, 128.5, 61.7, 52.7; HRMS (ESI) m/z: 194.0812 found (calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{NO}_{3},[\mathrm{M}-\mathrm{Cl}]^{+} 194.0812$).

Methyl isonicotinimidate hydrochloride (3f)
White solid ($3.80 \mathrm{~g}, 91 \%$); ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, 303 \mathrm{~K}$, DMSO-d ${ }_{6}$) $\delta \mathrm{ppm} 8.96$ (d, $J=6.4$ $\mathrm{Hz}, 2 \mathrm{H}), 8.57(\mathrm{~s}, 1 \mathrm{H}), 8.18(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.02(\mathrm{~s}, 1 \mathrm{H}), 3.06(\mathrm{~s}, 3 \mathrm{H}) .{ }^{9}$

[^3]

General method for the preparation of (E)-5-(amino(aryl)methylene)-2,3- dimethyl -

3,5- dihydro-4H-imidazol-4-ones (4a-f):

Solution of 2,3-dimethyl-3,5-dihydro- 4 H -imidazol-4-one $\mathbf{2}$ in toluene was generated as reported previously ${ }^{10}$ - N-methyl-2-((triphenylphosphoranylidene)amino)acetamide 1 (3.50 g , 10.0 mmol) was degassed by three vacuum/argon cycles. Toluene (50 ml) and the acetic anhydride ($1.0 \mathrm{~g}, 10 \mathrm{mmol}$) were added and the mixture was stirred at room temperature until the complete dissolution (approx. 40 min).

Corresponding imidate hydrochloride 3 (7.0 mmol) was suspended in 50 mL of chloroform, treated with sodium hydroxide solution (1 g in 10 mL of $\mathrm{H}_{2} \mathrm{O}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed in vacuum. Afterwards molecular sieves ($4 \AA, 5 \mathrm{~g}$) and the solution of 2,3-dimethyl-3,5-dihydro- 4 H -imidazol-4-one $\mathbf{2}$ in toluene (see above) were added to the crude imidate. The mixture was stirred at $100^{\circ} \mathrm{C}$ for $15-30$ minutes. The mixture was cooled to the room temperature, molecular sieves were removed by filtration and washed with dichloromethane ($2 \times 50 \mathrm{~mL}$). The solvent was removed in vacuum and the product was purified by silica gel column chromatography (EtOAc-Hex 1:9).

(E)-5-(amino(phenyl)methylene)-2,3-dimethyl-3,5-dihydro-4H-imidazol-4-one (4a)

Yellow solid ($220 \mathrm{mg}, 15 \%$); $\mathrm{mp}=210-213{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, 303 \mathrm{~K}$, DMSO-d ${ }_{6}$) $\delta \mathrm{ppm} 8.66$ (br.s., 1H), 7.89-7.88 (m, 2H), 7.70 (br.s., 1H), 7.51-7.48 (m, 3H), 3.11 (s, 3H), 2.16 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, 303 \mathrm{~K}, \mathrm{DMSO}_{6}$) $\delta \mathrm{ppm} 168.1,153.1,146.5,133.7,130.2,129.3$,

[^4]127.9, 113.6, 25.8, 14.3; HRMS (ESI) m/z: 216.1132 found (calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}^{+},[\mathrm{M}+\mathrm{H}]^{+}$ 216.1132).

(E)-5-(amino(4-methoxyphenyl)methylene)-2,3-dimethyl-3,5-dihydro-4H-imidazol-

4-one (4b)

Yellow solid ($240 \mathrm{mg}, 14 \%$); mp $=221-224{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, 303 \mathrm{~K}$, DMSO-d ${ }_{6}$) $\delta \mathrm{ppm} 8.74$ (br.s., 1 H), 7.97 (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}$), 7.62 (br.s., 1 H), 7.05 (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}$), 3.83 (s, $3 \mathrm{H}), 3.11(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, 303 \mathrm{~K}$, DMSO-d 6) $\delta \mathrm{ppm} 168.0,160.9$, 155.7, 145.8, 131.1, 125.7, 113.4, 113.1, 55.3, 25.8, 14.3; HRMS (ESI) m/z: 246.1237 found (calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{+},[\mathrm{M}+\mathrm{H}]^{+}$246.1238).

(E)-5-(amino(4-chlorophenyl)methylene)-2,3-dimethyl-3,5-dihydro-4H-imidazol-4one (4c)

Yellow solid ($250 \mathrm{mg}, 14 \%$); $\mathrm{mp}=168-171{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, 303 \mathrm{~K}$, DMSO-d ${ }_{6}$) $\delta \mathrm{ppm} 8.61$ (br.s., 1 H), 7.93 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.74 (br.s., 1 H), 7.57 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 3.11 (s, 3 H), 2.17 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, 303 \mathrm{~K}, \mathrm{DMSO}_{\mathrm{d}}^{6}$) $\delta \mathrm{ppm}$ 168.1, 151.4, 147.0, 134.9, $132.4,131.2,128.0,113.8,25.8,14.3$; HRMS (ESI) $\mathrm{m} / \mathrm{z}: 250.0739$ found (calcd for $\left.\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{ClN}_{3} \mathrm{O}^{+},[\mathrm{M}+\mathrm{H}]^{+} 250.0742\right)$.

(E)-5-(amino(4-bromophenyl)methylene)-2,3-dimethyl-3,5-dihydro-4H-imidazol-4one (4d)

Yellow solid ($210 \mathrm{mg}, 10 \%$); $\mathrm{mp}=162-165{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, 303 \mathrm{~K}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta \operatorname{ppm} 8.59$ (br.s., 1 H$), 7.85(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.74$ (br.s., 1 H), 7.71 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.11$ (s, 3H), 2.17 ($\mathrm{s}, 3 \mathrm{H}$) ${ }^{13} \mathrm{C}$ NMR (176 MHz, $\left.303 \mathrm{~K}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta \mathrm{ppm} 168.1,151.5,147.0,132.7$, 131.4, 131.0, 123.8, 113.8, 25.8, 14.3; HRMS (ESI) m/z: 294.0235 found (calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{BrN}_{3} \mathrm{O}^{+},[\mathrm{M}+\mathrm{H}]^{+}$294.0237).

Methyl (E)-4-(amino(1,2-dimethyl-5-oxo-1,5-dihydro-4H-imidazol-4-ylidene)methyl)

benzoate (4e)
Yellow solid (160 mg, 8\%); mp $=181-184{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (700 MHZ, $\left.303 \mathrm{~K}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta$ ppm 8.59 (br.s., 1 H), 8.05 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 8.00 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.80 (br.s., 1 H), 3.89 (s, $3 \mathrm{H}), 3.12(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, 303 \mathrm{~K}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta \mathrm{ppm}$ 168.2, 165.7, $151.4,147.4,138.1,130.7,129.7,128.6,114.2,52.3,25.8,14.3 ;$ HRMS (ESI) m/z: 274.1182 found (calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{3}{ }^{+},[\mathrm{M}+\mathrm{H}]^{+} 274.1186$).

(E)-5-(amino(pyridin-4-yl)methylene)-2,3-dimethyl-3,5-dihydro-4H-imidazol-4-one (4f)

Yellow solid ($120 \mathrm{mg}, 8 \%$); $\mathrm{mp}=159-162{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, 303 \mathrm{~K}$, DMSO-d 6) δ ppm 8.72 (dd, $J=6.1,1.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.83 (dd, $J=6.1 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 2 \mathrm{H}$), 3.12 (s, 3H), 2.18 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, 303 \mathrm{~K}$, DMSO-d 6) $\delta \mathrm{ppm} 168.2,149.58,149.56,148.1,140.9,123.4$, 114.6, 25.9, 14.3; HRMS (ESI) m/z: 217.1082 found (calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{4} \mathrm{O}^{+},[\mathrm{M}+\mathrm{H}]^{+}$217.1084).

General method for the preparation of (E)-2-(amino(aryl)methylene)imidazo[1,2-a]pyridin-3(2H)-ones (7a-e):

Pyridin-2-yl-glycine hydrochloride $5(1 \mathrm{~g}, 5 \mathrm{mmol})$ was dissolved in PCl_{3} (10 mL) under argon. The mixture was refluxed for 3 h and phosphorus trichloride was removed under vacuum. Afterwards pyridine (8 mL), triethylamine (1 mL) and corresponding imidate hydrochloride $\mathbf{3}$ (4 mmol) were added and the mixture was stirred for 18 h at room temperature. The solvent was removed under vacuum, the residue was dissolved in 200 mL of chloroform and washed with saturated NaHCO_{3} solution ($1 \times 100 \mathrm{~mL}$) and brine ($1 \times 50 \mathrm{~mL}$). The solution was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under vacuum. The product was purified by column chromatography $\left(\mathrm{CHCl}_{3}\right)$.

(E)-2-(amino(phenyl)methylene)imidazo[1,2-a]pyridin-3(2H)-one (7a)

Red solid ($237 \mathrm{mg}, 25 \%$); mp ~ $145{ }^{\circ} \mathrm{C}$ with decomposition; ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, 303 \mathrm{~K}$, DMSO-d ${ }_{6}$) δ ppm 9.64 (s, 1H), 8.82 (s, 1H), 8.23 (d, J=8.8 Hz, 2H), 7.88 (d, J=7.0 Hz, 1H), 7.20 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.10-7.03(\mathrm{~m}, 3 \mathrm{H}), 6.46(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, 303 \mathrm{~K}$, DMSO-d ${ }_{6}$) δ ppm 161.8, 158.8, 142.0, 132.9, 131.0, 129.9, 128.9, 128.1, 124.0, 118.7, 114.1, 108.8; HRMS (ESI) m/z: 238.0973 found (calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}^{+},[\mathrm{M}+\mathrm{H}]^{+} 238.0980$).

(E)-2-(amino(4-methoxyphenyl)methylene)imidazo[1,2-a]pyridin-3(2H)-one (7b)

Light green solid ($120 \mathrm{mg}, 11 \%$) ; mp $=164-166^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, 303 \mathrm{~K}$, DMSOd ${ }_{6}$) δ ppm 9.57 (br.s., 1H), 8.75 (br.s., 1H), 8.16 (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}$), 7.80 (d, $J=7.0 \mathrm{~Hz}$), 7.12 (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.04-6.96(\mathrm{~m}, 2 \mathrm{H}), 6.39$ (td, $J=6.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (176 MHz, 303 K, DMSO-d $_{6}$) $\delta \mathrm{ppm} 161.7,161.6,158.3,141.5,132.0,128.5,124.8,124.0,118.6$, 113.7, 113.6, 108.7, 55.4; HRMS (ESI) m/z: 268.1076 found (calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{+},[\mathrm{M}+\mathrm{H}]^{+}$ 268.1081).

(E)-2-(amino(4-chlorophenyl)methylene)imidazo[1,2-a]pyridin-3(2H)-one (7c)

Orange solid ($366 \mathrm{mg}, 34 \%$); mp ~ $235{ }^{\circ} \mathrm{C}$ with decomposition; ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, 303$ K, DMSO-d ${ }^{6}$) δ ppm 9.42 (br.s., 1H), 8.87 (br.s., 1H), 8.08 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.81 (d, $J=7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.64(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.01-6.98(\mathrm{~m}, 2 \mathrm{H}), 6.39(\mathrm{ddd}, J=7.1,4.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, 303 \mathrm{~K}, \mathrm{DMSO}_{6} \mathrm{~d}_{6}$) $\delta \mathrm{ppm} 161.9,157.1,142.3,135.9,131.8,131.6,129.2,128.2$, 124.1, 118.6, 114.2, 108.8; HRMS (ESI) m/z: 272.0581 found (calcd for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClN}_{3} \mathrm{O}^{+},[\mathrm{M}+\mathrm{H}]^{+}$ 272.0585).

(E)-2-(amino(4-bromophenyl)methylene)imidazo[1,2-a]pyridin-3(2H)-one (7d)

Orange solid ($142 \mathrm{mg}, 11 \%$); $\mathrm{mp}=243-245{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, 303 \mathrm{~K}$, DMSO- d_{6}) δ ppm 9.41 (br.s., 1H), 8.86 (br.s., 1H), 8.00 (d, J=8.5 Hz, 2H), 7.80 (d, J=7.0 Hz, 1H), 7.78 (d,
$J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.01-6.97 (m, 2H), 6.39 (ddd, $J=7.0,3.7,3.6 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, 303$ K, DMSO- d_{6}) δ ppm 161.9, 157.2, 142.4, 132.0, 132.0, 131.2, 129.2, 124.8, 124.1, 118.6, 114.2, 108.9; HRMS (ESI) m/z: 316.0078 found (calcd for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BrN}_{3} \mathrm{O}^{+},[\mathrm{M}+\mathrm{H}]^{+} 316.0080$).

Methyl (E)-4-(amino(3-oxoimidazo[1,2-a]pyridin-2(3H)-ylidene)methyl)benzoate (7e)

Red solid (280mg, 24\%); mp $=242-245{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, 303 \mathrm{~K}$, DMSO-d ${ }_{6}$) δ ppm 9.39 (br.s., 1H), 8.92 (br.s., 1H), 8.14 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 8.11 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.81 (d, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-6.97(\mathrm{~m}, 2 \mathrm{H}), 6.40(\mathrm{ddd}, J=7.0,5.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, 303 \mathrm{~K}, \mathrm{DMSO}_{6}$) $\delta \mathrm{ppm}$ 165.7, 162.1, 157.1, 142.7, 137.3, 131.3, 130.3, 129.4, 128.7, 124.1, 118.7, 114.6, 108.9, 52.4; HRMS (ESI) m/z: 296.1026 found (calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{3}{ }^{+},[\mathrm{M}+\mathrm{H}]^{+}$296.1030).

General method for the preparation of locked derivatives:

Corresponding chromophore 4 or $7(0.3 \mathrm{mmol})$ and triethylamine ($0.42 \mathrm{~mL}, 3 \mathrm{mmol}$) were dissolved in toluene (5 mL). Boron trifluoride diethyl etherate $(0.22 \mathrm{~mL}, 1.8 \mathrm{mmol}$) was added and the reaction mixture was heated up to $100^{\circ} \mathrm{C}$ for 2-2.5 hours. After that 20 mL of ethylacetate were added and organic layer was washed with water ($3 \times 10 \mathrm{~mL}$), brine ($1 \times 10 \mathrm{~mL}$) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed in vacuum. The product was purified by column chromatography $\left(\mathrm{CHCl}_{3}\right)$.

(E)-5-(((difluoroboranyl)amino)(phenyl)methylene)-2,3-dimethyl-3,5-dihydro-4H-

imidazol-4-one (8a)

Yellow solid ($54 \mathrm{mg}, 69 \%$); $\mathrm{mp}=230-233{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, 303 \mathrm{~K}$, DMSO-d ${ }_{6}$) δ ppm 9.51 (s, 1H), 8.21 (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.67$ (t, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.59$ (t, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 3.43 (s, 3H), 2.33 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, 303 \mathrm{~K}$, DMSO-d 6) $\delta \mathrm{ppm}$ 161.7, 157.9, 144.1, 132.6, 130.7, 129.7, 128.5, 112.2, 27.9, 13.4; HRMS (ESI) m/z: 264.1111 found (calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{BF}_{2} \mathrm{~N}_{3} \mathrm{O}^{+},[\mathrm{M}+\mathrm{H}]^{+}$264.1115).

(E)-5-(((difluoroboranyl)amino)(4-methoxyphenyl)methylene)-2,3-dimethyl-3,5-

dihydro-4H-imidazol-4-one (8b)

Yellow solid ($31 \mathrm{mg}, 35 \%$); $\mathrm{mp}=208-211^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, 303 \mathrm{~K}$, DMSO-d ${ }_{6}$) δ ppm 9.29 (s, 1H), 8.39 (d, J=8.9 Hz, 2H), 7.15 (d, J=8.9 Hz, 2H), 3.87 (s, 3H), 3.42 (s, 3H), 2.33 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, 303 \mathrm{~K}$, DMSO- d_{6}) $\delta \mathrm{ppm} 162.9,160.4,157.4,143.5,132.0,122.7$, 114.0, 111.9, 55.5, 27.9, 13.3; HRMS (ESI) m/z: 294.1223 found (calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{BF}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{+}$, $[\mathrm{M}+\mathrm{H}]^{+}$294.1220).

(E)-5-((4-chlorophenyl)((difluoroboranyl)amino)methylene)-2,3-dimethyl-3,5-

dihydro-4H-imidazol-4-one (8c)

Yellow solid ($30 \mathrm{mg}, 34 \%$); $\mathrm{mp} \sim 218{ }^{\circ} \mathrm{C}$ with decomposition; ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, 303$ K, DMSO-d ${ }^{2}$) δ ppm 9.56 (br.s., 1H), 8.26 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.69 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$), 3.43 (s, 3H), 2.33 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, 303 \mathrm{~K}, \mathrm{DMSO}_{-} \mathrm{d}_{6}$) $\delta \mathrm{ppm}$ 160.2, 158.1, 144.4, 137.6, 131.6, 129.4, 128.7, 112.2, 27.9, 13.4; HRMS (ESI) m/z: 298.0723 found (calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{BClF}_{2} \mathrm{~N}_{3} \mathrm{O}^{+},[\mathrm{M}+\mathrm{H}]^{+}$298.0725).

(E)-5-((4-bromophenyl)((difluoroboranyl)amino)methylene)-2,3-dimethyl-3,5-

dihydro-4H-imidazol-4-one (8d)

Yellow solid ($50 \mathrm{mg}, 48 \%$); $\mathrm{mp}=228-230{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, 303 \mathrm{~K}$, DMSO-d ${ }_{6}$) δ ppm 9.57 (br.s., 1H), 8.17 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.83 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 3.43 (s, 3H), 2.33 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, 303 \mathrm{~K}$, DMSO-d $_{6}$) $\delta \mathrm{ppm} 160.3,158.1,144.4,131.7,131.6,129.7,126.7$, 112.2, 28.0, 13.4; HRMS (ESI) m/z: 342.0217 found (calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{BBrF}_{2} \mathrm{~N}_{3} \mathrm{O}^{+}$, $[\mathrm{M}+\mathrm{H}]^{+}$ 342.0219).

Methyl
(E)-4-(((difluoroboranyl)amino)(1,2-dimethyl-5-oxo-1,5-dihydro-4H-imidazol-4-ylidene)methyl)benzoate (8e)

Yellow solid ($61 \mathrm{mg}, 63 \%$); $\mathrm{mp} \sim 260{ }^{\circ} \mathrm{C}$ with decomposition; ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, 303$ K, DMSO-d ${ }^{2}$) δ ppm 9.68 (br.s., 1H), 8.27 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$), 8.13 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$), 3.91 (s, $3 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, 303 \mathrm{~K}$, DMSO-d 6) $\delta \mathrm{ppm} 165.5,160.6$, 158.3, 1448, 134.8, 132.7, 130.0, 129.1, 112.4, 52.5, 28.0, 13.4; HRMS (ESI) m/z: 322.1167 found (calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{BF}_{2} \mathrm{~N}_{3} \mathrm{O}_{3}{ }^{+},[\mathrm{M}+\mathrm{H}]^{+} 322.1169$).

(E)-5-(((difluoroboranyl)amino)(pyridin-4-yl)methylene)-2,3-dimethyl-3,5-dihydro-

4H-imidazol-4-one (8f)

Yellow solid ($19 \mathrm{mg}, 24 \%$); $\mathrm{mp}=178-181{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, 303 \mathrm{~K}, \mathrm{DMSO}-\mathrm{d}_{6}$) δ ppm 9.78 (br.s., 1 H), 8.84 (d, $J=4.5,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.07$ (dd, $J=4.5,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}), 2.34$ ($\mathrm{s}, 3 \mathrm{H}$) ${ }^{13}{ }^{13} \mathrm{C}$ NMR (176 MHz, $303 \mathrm{~K}, \mathrm{DMSO}_{6}$) $\delta \mathrm{ppm} 159.5,158.6,150.2,145.2,137.8,123.1$, 112.6, 28.0, 13.4; HRMS (ESI) m/z: 265.1066 found (calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{BF}_{2} \mathrm{~N}_{4} \mathrm{O}^{+},[\mathrm{M}+\mathrm{H}]^{+}$ 265.1067).

(E)-2-(((difluoroboranyl)amino)(phenyl)methylene)imidazo[1,2-a]pyridin-3(2H)-one (9a)

Orange solid (44 mg, 52\%); mp ~ $230{ }^{\circ} \mathrm{C}$ with decomposition; ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, 303$ K, DMSO-d ${ }_{6}$) δ ppm $10.68(\mathrm{~s}, 1 \mathrm{H}), 8.38(\mathrm{~d}, \mathrm{~J}=7.8,2 \mathrm{H}), 8.26(\mathrm{~d}, J=7.0,1 \mathrm{H}), 7.76(\mathrm{t}, J=7.4,1 \mathrm{H})$, $7.67(\mathrm{t}, J=7.8,2 \mathrm{H}) 7.50(\mathrm{~d}, J=9.4,2 \mathrm{H}), 7.28-7.25(\mathrm{~m}, 1 \mathrm{H}), 6.91(\mathrm{t}, J=6.8,1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (176 $\mathrm{MHz}, 303 \mathrm{~K}, \mathrm{DMSO}_{6}$) $\delta \mathrm{ppm} 165.8,148.8,140.2,133.4,130.4,130.2,128.7,127.2,122.8$, 118.4, 115.6, 113.0; HRMS (ESI) m/z: 286.0955 found (calcd for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BF}_{2} \mathrm{~N}_{3} \mathrm{O}^{+},[\mathrm{M}+\mathrm{H}]^{+}$ 286.0958).

(E)-2-(((difluoroboranyl)amino)(4-methoxyphenyl)methylene)imidazo[1,2-a]pyridin-3(2H)-one (9b)

Orange solid (44 mg, 47\%); mp $=240-243{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, 303 \mathrm{~K}, \mathrm{DMSO}-\mathrm{d}_{6}$) δ ppm 10.37 (br.s., 1 H$), 8.59(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}) 8.24(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.28-7.24 (m, 1H), $7.22(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (176 MHz, 303 K, DMSO-d ${ }_{6}$) δ ppm 164.1, 163.7, 148.4, 139.8, 132.9, 127.0, 122.7, 122.2, 118.3, $115.5,114.3,112.9,55.7$; HRMS (ESI) $\mathrm{m} / \mathrm{z}: 316.1061$ found (calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BF}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{+}$, $\left.[\mathrm{M}+\mathrm{H}]^{+} 316.1063\right)$.

(E)-2-((4-chlorophenyl)((difluoroboranyl)amino)methylene)imidazo[1,2-a]pyridin-3(2H)-one (9c)

Orange solid ($62 \mathrm{mg}, 65 \%$); $\mathrm{mp}=250-252{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, 303 \mathrm{~K}, \mathrm{DMSO}-\mathrm{d}_{6}$) δ ppm 10.73 (br.s., 1 H$), 8.43$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.26(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.50(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{ddd}, J=9.4,6.7,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (176 MHz, 303 K, DMSO-d6) δ ppm 164.4, 148.9, 140.3, 138.6, 132.3, 130.5, 128.9, 127.4, 122.8, $118.4,115.5,113.1 ;$ HRMS (ESI) m/z: 320.0567 found (calcd for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{BClF}_{2} \mathrm{~N}_{3} \mathrm{O}^{+},[\mathrm{M}+\mathrm{H}]^{+}$ 320.0568).

(E)-2-((4-bromophenyl)((difluoroboranyl)amino)methylene)imidazo[1,2-a]pyridin-

3(2H)-one (9d)

Orange solid ($65 \mathrm{mg}, 60 \%$) ; mp $=248-250{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(700 \mathrm{MHz}, 303 \mathrm{~K}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta$ ppm 10.74 (br.s., 1 H), 8.34 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.26(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.91$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.49(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.29(\mathrm{ddd}, J=9.4,6.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (176 MHz, $303 \mathrm{~K}, \mathrm{DMSO}_{6}$) $\delta \mathrm{ppm} 164.6,148.9,140.3,132.3,131.8,129.2,127.7$, 127.4, 122.9, 118.4, 115.5, 113.1; HRMS (ESI) m/z: 364.0066 found (calcd for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BF}_{2} \mathrm{~N}_{3} \mathrm{O}$, $\left.[\mathrm{M}+\mathrm{H}]^{+} 364.0063\right)$.

Methyl
(E)-4-(((difluoroboranyl)amino)(3-oxoimidazo[1,2-a]pyridin-2(3H)ylidene)methyl) benzoate (9e)

Dark red solid (52 mg, 50\%); mp ~ $245{ }^{\circ} \mathrm{C}$ with decomposition; ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, 303$ K, DMSO-d ${ }^{\text {) }} \delta$ ppm 10.87 (br.s., 1 H), 8.44 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 8.27 (d, $\left.J=7.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.20$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}) 7.49(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{ddd}, J=9.4,6.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{dd}, J=6.7,0.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (176 MHz, $303 \mathrm{~K}, \mathrm{DMSO}_{\mathrm{d}}$) $\delta \mathrm{ppm} 165.4,149.1,140.5,134.2$, $133.3,130.7,130.2,129.1,128.8,127.5,122.9,118.4,113.1,52.5 ;$ HRMS (ESI) m/z: 344.1010 found (calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{BF}_{2} \mathrm{~N}_{3} \mathrm{O}_{3}{ }^{+},[\mathrm{M}+\mathrm{H}]^{+} 344.1013$).

3. X-Ray data

Crystals of compound $\mathbf{8 d}\left(\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{BBrF}_{2} \mathrm{~N}_{3} \mathrm{O}, M=341.96\right)$ were grown from acetonitrile were light yellow, triclinic, space group P-1. X-ray diffraction data were collected using a STADI-VARI Pilatus-100K four cycle diffractometer $(\lambda(\mathrm{Mo} \mathrm{K} \alpha)=0.71073 \AA$, plane graphite monochromator) at $295 \mathrm{~K}: a=4.8377(6), b=9.7590(13), c=14.1241(19) \AA, \alpha=82.194(11), \beta$ $=85.642(10), \gamma=84.183(10)^{\circ}, V=655.92(15) \AA^{3}, Z=2$. Intensities of 29448 reflections were measured and 3318 independent reflections $\left[R_{\text {int }}=0.0513\right]$ were used in further refinement. Initially spherical atom refinements were undertaken with using SHELXS-97 [$\left.{ }^{11}\right]$, then nonhydrogen atoms were refined anisotropically with using SHELXL-2015 [${ }^{12}$]. The refinement converged to $w R_{2}=0.2383, G O F=0.756$ for all independent reflections $\left(R_{1}=0.0615\right.$ was calculated against F^{2} for 871 observed reflections with $I>2 \sigma(I)$). Atomic coordinates, bond lengths, angles, and displacement atom parameters have been deposited at the Cambridge Crystallographic Data Center (CCDC) with number 1919301.

[^5]
4. Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra

$\begin{array}{ll}0.73 & 2.000 .732 .10\end{array}$

Chloroform

$2.00 \quad 2.03$

$\begin{array}{ccccc} & & \\ 8.20 & 8.15 & 8.10 & 8.05 & 8.00\end{array}$

E-isomer

 5 r \qquad $\stackrel{\circ}{\sim}$ \qquad E-isomer n
E

5. Computational results

Computational details

The ground-state equilibrium geometry parameters were found at the MP2 level of theory. The (aug)-cc-pVTZ basis set augmented with diffuse functions on oxygen and nitrogen atoms was used. All excited-state calculations were performed using the extended multiconfiguration quasiperturbation theory XMCQPDT2. ${ }^{13}$ The zeroth-order wave functions were constructed within the complete active space self-consistent field method $\operatorname{CASSCF}(16,14)$, where all valence π-type orbitals of the chromophore were included in the active space. The vertical excitation and emission energies were calculated at the $\operatorname{XMCQDPT} 2[7] / \mathrm{SA}(7)-\operatorname{CASSCF}(16,14) /(a u g)-c c-p V T Z$ level of theory. The equilibrium geometry parameters in the first excited state were obtained using the XMCQDPT2[2]/SA(2)-CASSCF(14,13)/(aug)-cc-pVTZ method with a slightly smaller active space. One orbital was removed from the active space based on the analysis of the occupation numbers of the natural orbitals. All calculations were performed within the Firefly quantum chemistry package. ${ }^{14}$

The two-photon absorption properties were calculated using Dalton quantum chemistry program. ${ }^{15,16}$ The ground-state equilibrium geometry parameters obtained previously at the MP2 level of theory were used. The excitation energies and cross-sections were found with time-dependent hybrid exchange-correlation functional TDDFT CAM-B3LYP. The (aug)-cc-pVTZ basis set was used.

[^6]Table S5. Calculated transition energies, oscillator strengths, and average dipole moments for compound 8a. Vertical excitation and emission energies were calculated at the XMCQDPT2[2]/SA(2)-CASSCF(16,14)/(aug)-cc-pVTZ level of theory in the MP2/(aug)-cc-pVTZ and XMCQDPT2/CASSCF(14,13)/(aug)-cc-pVTZ geometries, respectively. Oscillator strengths and average dipole moments were calculated as the zeroth order XMCQDPT2 properties.

	Energy, Hartree		Average dipole moment, Debye	
	Ground-state geometry	Excited-state geometry	Ground-state geometry	Excited-state geometry
$\mathbf{S}_{\mathbf{0}}$	-848.6718114	-848.6556788	5.6	5.9
$\mathbf{S}_{\mathbf{1}}$	-848.5487122	-848.5603918	7.0	7.2
	Vertical transition energy, $\mathbf{e V}(\mathbf{n m})$	Oscillator strength		
$\mathbf{S}_{\mathbf{0} \rightarrow \mathbf{S}_{\mathbf{1}}}$	$3.35(370)$	0.3		
$\mathbf{S}_{\mathbf{1} \rightarrow} \rightarrow \mathbf{S}_{\mathbf{0}}$	$2.59(478)$	0.2		

Table S6. Calculated two-photon absorption properties for compound 8a. The excitation energies and cross-sections were calculated using TDDFT CAM-B3LYP functional in (aug)-cc-pVTZ basis set. Note that the $\mathrm{S}_{0}-\mathrm{S}_{1}$ transition energy is overestimated by TDDFT as compared to the XMCQDPT2 results. Also, TDDFT/CAM-B3LYP two-photon absorption strengths are known to be 2-3 times smaller than those obtained using highlevel coupled-cluster theory EOM-EE-CCSD for the neutral GFP chromophores ($\sigma=4.90[4.85] \mathrm{GM}$ vs. 14.68 GM calculated at the CAM-B3LYP/aug-cc-pVD[T]Z and EOM-EE-CCSD/mod-d-aug-cc-pVDZ levels for the 4-(p-hydroxybenzylidene)-imidazolidin-5-one molecule). ${ }^{17}$

Two-photon absorption $\mathbf{S}_{\mathbf{0}} \rightarrow \mathbf{S}_{\mathbf{1}}$						
State	Energy, Hartree	$\mathbf{2 \omega}$, Hartree	$\mathbf{\Delta E}[\mathbf{2 \omega}], \mathbf{e V}$	Excitation wavelength $\boldsymbol{\omega}, \mathbf{n m}$	Polarization	$\boldsymbol{\sigma}, \mathbf{G M}$
$\mathbf{S}_{\mathbf{0}}$	-850.0550825	0.1485	4.04	614	Linear	5.70
$\mathbf{S}_{\mathbf{1}}$	-849.9066100			Circular	4.91	

[^7]
Cartesian coordinates of the optimized structures of compound 8a in \AA

Ground state $\left(\mathrm{S}_{0}\right)$ structure optimized at the MP2/(aug)-cc-pVTZ level of theory
Energy $=-848.623647$ Hartree

N	-1.663057231800	1.177937832600	-3.297723079600
C	-1.723799953400	2.454878634100	-3.601444474700
C	-2.126608354900	1.111229792300	-1.995849473300
C	-2.462344297200	2.384083623600	-1.525391952700
N	-2.208292506300	3.226285473100	-2.562249887700
H	-1.431483012800	2.890190877900	-4.541695044200
H	-2.330321708300	4.226717769400	-2.544476361800
C	-2.379783720000	-0.003975461800	-1.165439889900
C	-2.254571375800	-1.394348832100	-1.614107420500
C	-2.537155029700	-1.742238799600	-2.940814665000
C	-1.861229698400	-2.382861278300	-0.702221799000
C	-2.450896072800	-3.072820991200	-3.336298329600
C	-1.765972433700	-3.708676219600	-1.110520990800
C	-2.067516897400	-4.056973979700	-2.426075738000
H	-1.589046379700	-2.107296443800	0.308846394400
H	-2.680040327900	-3.341746490700	-4.358067126300

H	-1.448527881800	-4.465729878000	-0.407071521700
O	-2.958513964000	2.733169128600	-0.379220262000
H	-1.995039541000	-5.088430716500	-2.742247650900
N	-2.773753132400	0.277496676200	0.057440492200
H	-3.061567033000	-0.510562556200	0.624585312300
B	-2.797138128000	1.714903856100	0.726622770500
H	-2.820975927100	-0.973322882800	-3.643561965700
F	-1.589815739600	1.919379478500	1.350344319600
F	-3.868694598500	1.787640805000	1.569913621100

First excited state (\mathbf{S}_{1}) structure optimized at the XMCQDPT2[2]/SA(2)-CASSCF(14,13)/(aug)-cc-pVTZ level of theory
Energy $=-848.560864$ Hartree

N	-2.131736091100	1.276869440200	-3.422867693700
C	-2.119425686100	2.598536873700	-3.667254333200
C	-2.302531128600	1.158194935700	-2.080995162000
C	-2.430967114100	2.467430410000	-1.486333599500
N	-2.297656435900	3.346663479600	-2.539038995900
H	-1.973124744700	3.041090520600	-4.639564588100
H	-2.324067998400	4.353930807500	-2.460839590300
C	-2.486702363700	-0.044809164600	-1.260095085600

C	-2.265767101400	-1.398650547500	-1.618976007400
C	-1.856821999200	-1.774494696200	-2.933729491000
C	-2.457492128800	-2.435280405700	-0.657484642800
C	-1.665336873300	-3.114695456400	-3.256032586300
C	-2.264997199000	-3.771040657600	-1.001300972600
C	-1.873789007300	-4.126130025100	-2.302174085400
H	-2.709744289700	-2.188588534900	0.367178974600
H	-1.356494723400	-3.376901756900	-4.260133082900
H	-2.408180094100	-4.537573370600	-0.250396682700
O	-2.621069882200	2.835161327500	-0.277020858300
H	-1.723478871000	-5.165352299900	-2.563059414300
N	-3.088443990800	0.369304149300	-0.083888778500
H	-3.595105571200	-0.346388367300	0.431283967800
B	-2.686297348600	1.644925699500	0.733418675900
H	-1.705354486100	-1.006994007700	-3.679917244900
F	-1.425304604600	1.509856800400	1.255260872400
F	-3.655663626600	1.933391694200	1.644010680800

[^0]: ${ }^{1}$ Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia. baranovmikes@gmail.com
 ${ }^{2}$ Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991
 Moscow, Russia. bochenkova@phys.chem.msu.ru
 ${ }^{3}$ Semenov Institute of Chemical Physics of RAS, Moscow, Russia
 ${ }^{4}$ Pirogov Russian National Research Medical University, Ostrovitianov 1, Moscow 117997, Russia

[^1]: ${ }^{5}$ Würth C., Grabolle M., Pauli J., Spieles M., Resch-Genger U. Nature Protocols, 2013, 8(8), 1535.

[^2]: ${ }^{6}$ D. J. Connolly, P. M. Lacey, M. McCarthy, C. P. Saunders, A-M. Carroll, R. Goddard, P. J. Guiry. J. Org. Chem. 2004. 69. 20. 6572-6589.
 ${ }^{7}$ X-J. Han, M. Yao, C-D. Lu. Org. Lett. 2012. 14. 11. 2906-2909.
 ${ }^{8}$ M. A. Pérez, C. A. Dorado, J. L. Soto. Synthesis. 1983. 6. 483-486.

[^3]: ${ }^{9}$ B. Whelan, I. Iriepa, E. Galvez. Synthesis 1994. 1994. 8. 832-836.

[^4]: ${ }^{10}$ Zaitseva S.O., Golodukhina S.V., Baleeva N.S., Levina E.A., Smirnov A.Yu., Zagudaylova M.B., Baranov M.S. ChemistrySelect. 2018, 3, 8593-8596.

[^5]: ${ }^{11}$ Sheldrick G.M. Acta Cryst. 2008, A64, 112-122.
 ${ }^{12}$ Sheldrick G.M. Acta Cryst. 2015, C71, 3-8.

[^6]: ${ }^{13}$ A.A. Granovsky, J. Chem. Phys., 2011, 134, 214113.
 ${ }_{15}^{14}$ A.A. Granovsky, Firefly, version 8.2.0 http://classic.chem.msu.su/gran/firefly/index.html
 ${ }^{15}$ K. Aidas, C. Angeli, K. L. Bak, V. Bakken, R. Bast, L. Boman, O. Christiansen, R. Cimiraglia, S. Coriani, P. Dahle, E. K. Dalskov, U. Ekström, T. Enevoldsen, J. J. Eriksen, P. Ettenhuber, B. Fernández, L. Ferrighi, H. Fliegl, L. Frediani, K. Hald, A. Halkier, C. Hättig, H. Heiberg, T. Helgaker, A. C. Hennum, H. Hettema, E. Hjertenæs, S. Høst, I.-M. Høyvik, M. F. Iozzi, B. Jansik, H. J. Aa. Jensen, D. Jonsson, P. Jørgensen, J. Kauczor, S. Kirpekar, T. Kjærgaard, W. Klopper, S. Knecht, R. Kobayashi, H. Koch, J. Kongsted, A. Krapp, K. Kristensen, A. Ligabue, O. B. Lutnæs, J. I. Melo, K. V. Mikkelsen, R. H. Myhre, C. Neiss, C. B. Nielsen, P. Norman, J. Olsen, J. M. H. Olsen, A. Osted, M. J. Packer, F. Pawlowski, T. B. Pedersen, P. F. Provasi, S. Reine, Z. Rinkevicius, T. A. Ruden, K. Ruud, V. Rybkin, P. Salek, C. C. M. Samson, A. Sánchez de Merás, T. Saue, S. P. A. Sauer, B. Schimmelpfennig, K. Sneskov, A. H. Steindal, K. O. Sylvester-Hvid, P. R. Taylor, A. M. Teale, E. I. Tellgren, D. P. Tew, A. J. Thorvaldsen, L. Thøgersen, O. Vahtras, M. A. Watson, D. J. D. Wilson, M. Ziolkowski, and H. Ågren, WIREs Comput. Mol. Sci., 2014, 4, 269-284
 ${ }^{16}$ Dalton, a molecular electronic structure program, Release Dalton2018.2 (2019), http://daltonprogram.org

[^7]: ${ }^{17}$ M.T. P. Beerepoot, D.H. Friese, N.H. List, J. Kongsted, K. Ruud, Phys. Chem. Chem. Phys. 2015, 17, 19306.

