Supporting Information

Symmetric exponential amplification reaction based DNA nanomachine for the fluorescent detection of nucleic acids

Qi Yan^a, Qiuyue Duan^a, Yuqi Huang^a, Jing Guo^b, Liang Zhong^a, Hong Wang^a, Gang Yi^{a,*}

^a Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of

Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China

^bDepartment of Laboratory Medicine, Chongqing Traditional Chinese Medicine Hospital,

Chongqing, Chongqing 400021, China

^{*} Corresponding author. Tel: +86 23 68485240; Fax: +86 23 68485239

E-mail address: yigang666@cqmu.edu.cn (G. Yi).

Sequence Name	oligonucleotide sequences (5'-3')		
Р-НР6	CCCGCCCTACCCACCTCAGCGTGCTGCAGAGACCGGCGCACAGA GCCTCAGCACGCGT		
Р-НР8	CCCGCCCTACCCACCTCAGCGCGTAGCCAGAGACCGGCGCACAG AGCCTCAGCTACGCGTA		
P-HP10	CCCGCCCTACCCACCTCAGCGTAAGCCAGAGACCGGCGCACAGA GCCTCAGCTTACGCGTAA		
Target DNA	TTCCTCTGTGCGCCGGTCTCTCCT		
MT1	TTCCTCTGTGCGCCGGTCTATCCT		
MT2	TTCCTCTGTGCGCCAGTCTATCCT		
MT3	TTCCTCTGTACGCCAGTCTATCCT		
NC	AGAGGTAGTAGGTTGCATAGTTGA		
SP	CCCGCCCTACCCACCTCAGCAGGAGAGACCGGCGCCTCAGCAGG AGAGACCGGCGCTT		
The produced G- triplex fragment	TGAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG		

 Table S1. All the oligonucleotide sequences involved in this study.

Fig. S1. Schematic of the classical exponential amplification reaction (EXPAR).

Fig. S2. Capability of classical EXPAR based DNA nanomachine to quantify target DNA. (A) Fluorescence spectra of various concentrations of target DNA (0, 1 pM, 10 pM, 100 pM, 1 nM, 10nM and 100 nM). (B) The dose-response curves of fluorescence intensity and various concentrations of target DNA. (Inset) The linear correlation between fluorescence intensity and the logarithm of target DNA concentration.

Fig. S3. (A) Reproducibility of the proposed sensor among three times detection in different concentration of target samples. (B) Stability of the proposed sensor during 10 days storage at 4°C. The error bars represent the standard deviations of three parallel experiments for each concentration of target DNA.

Methods	Detection modes	Sensitivity	Linear range	References
EXPAR	Fluorescence	91 pM	0.5 nM - 50 nM	[1]
P-MB based SDA	Fluorescence	100 pM	0.1 nM - 75 nM	[2]
Dual-CNDP based EXPAR	Fluorescence	50 pM	0.05 nM - 150 nM	[3]
DFA-machine	Colorimetric	10 pM	0.01nM - 150 nM	[4]
Reverse-SDA	Fluorescence	1 nM	1 nM - 100 nM	[5]
DHMB-based SDA	Colorimetric	4 pM	4 pM - 400 nM	[6]
MI-MB-based system	Fluorescence	0.5 nM	0.5 nM - 400 nM	[7]
Toehold mediated SDA	Fluorescence	0.08 nM	0.08 nM - 200 nM	[8]
N-RCA and S-SDA	Fluorescence	5 pM	5 pM - 20 nM	[9]
S-EXPAR	Fluorescence	10 pM	10 pM - 300 nM	This work

Table S2. Comparison of the proposed method for nucleic acids detection and those
reported in literature.

References:

[1] H. Zhao, J. Dong, F. Zhou, B. Li, Microchimica Acta, 2015, 182, 2495-2502.

[2] F. Li, H. Zhao, Z.Y. Wang, Z.S. Wu, Z. Yang, C.C. Li, Biosens. Bioelectron., 2017, 91, 692-698.

[3] J. Xu, Z.S. Wu, W. Shen, H. Xu, H. Li, L. Jia, Biosens. Bioelectron., 2015, 73, 19-25.

[4] H. Xu, D. Wu, C.Q. Li, Z. Lu, X.Y. Liao, J. Huang, Biosens. Bioelectron., 2017, 90, 314-320.

[5] L. Wang, Y. Han, S. Xiao, S. Lv, C. Wang, N. Zhang, Talanta, 2018, 187, 365-369.

[6] D. Wu, H. Xu, H. Shi, W. Li, M. Sun, Z.S. Wu, Anal. Chim. Acta., 2017, 957, 55-62.

[7] J. Xu, T. Zheng, J. Le, L. Jia, Talanta, 2018, 187, 272-278.

[8] Z.Y. Wang, F. Li, Y. Zhang, H. Zhao, H. Xu, Z.-S. Wu, Sens. Actuators B: Chem., 2017, 251, 692-698.

[9] H. Xu, Y. Zhang, S. Zhang, M. Sun, W. Li, Y. Jiang, Anal. Chim. Acta., 2019, 1047, 172-178.