1	
2	Supporting Information
3	
4	Anti-biofouling effect of a thin film nanocomposite membrane with a
5	functionalized-carbon-nanotube-blended polymeric support for the
6	pressure-retarded osmosis process.
7	
8	
9	Yeji Kim ^{a,b} , Eunmok Yang ^{a,b} , Hosik Park ^{*b} and Heechul Choi ^{*a,b}
10	
11	^a School of Earth Science and Environmental Engineering, Gwangju Institute of Science and
12	Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, South Korea
13	^b Center for Membranes, Advanced Materials Division, Korea Research Institute of Chemical
14	Technology (KRICT), Daejeon 34114, South Korea
15	
16	
17	Supporting Information for
18	Chemosphere
19	
20	
21	* Corresponding author.
22	E-mail address: hcchoi@gist.ac.kr (H. Choi); Phone: 82-62-715-2441; Fax: 82-62-715-2423.
23	E-mail address: hspark@krict.re.kr (H. Park)
24	

25 **Experimental**

26 1. Functionalization of CNTs

27 First, 0.5 g of pristine MWCNTs was refluxed with an acid solution of sulfuric acid and nitric 28 acid (volume ratio of 3:1) at 100 °C for 3 h to remove impurities. Second, after reflux was completed, the solution was diluted with DI to attain pH 5-6. Then, the solution was 29 subjected to centrifugation at 1500 rpm to neutralize the solution by discarding highly acidic 30 water and adding DI water until neutral pH was attained. The diluted solution was filtered 31 using Isopore membrane filters (0.2 µm GTTP, Merck, Korea). The filtered solid was dried in a 32 35°C isothermal-isohumidity chamber. After drying, MWCNTs were again immersed in the 33 34 same acid mixture (3:1) and sonicated at 70 °C for 9 h for the attachment of hydrophilic 35 functional groups. After oxidation, the acid solution was cooled and diluted with DI water (pH 5-6). The functionalized CNTs were filtered and dried in the 35°C isothermal-36 isohumidity chamber. The final functionalized CNTs were smashed into small particles to 37 mix with the polymer. 38

39

40 **2. Membrane performance test**

Water flux and reverse salt flux were measured in the FO mode (AL-FS)/PRO mode (AL-DS) and 41 calculated by the following equations. J_w is the water flux through the membrane. V_{R0} is the 42 initial volume of the feed solution. V_F is the final volume of the feed solution after operation. A_m 43 is the effective membrane area. t is time. J_s is the reverse salt flux through the membrane. C_F is 44 the final salt concentration of the feed solution after operation. The salt concentration of the 45 feed solution was measured using an electrical conductivity meter (ES-71G, Horiba, Japan) for 46 RSF calculation. The units of water flux and reverse salt flux are $Lm^{-2}h^{-1}$ (LMH) and $gm^{-2}h^{-1}$ 47 48 (gMH), respectively.

49

$$J_w = \frac{V_{F0} - V_F}{A_m t}$$
50

$$J_s = \frac{C_F V_F}{A_m t}$$

53

54 **3. Biofouling cleaning protocol**

A biofouling cleaning protocol for thorough cleaning after each biofouling experiment was developed. Several cleaning steps were carried out to remove trace organic impurities and microorganisms: (1) circulating 0.5% of sodium hypochlorite (NaOCl) for 8 h, (2) washing with DI water for 30 min, (3) removing trace organic matter using sodium dodecyl sulfate (SDS) for 4 h, and (4) washing again with DI for 30 min.

60

61~ 4. Laser scanning confocal microscopy analysis of the biofouled membrane

The morphology of a biofouled membrane surface after the biofouling test was observed by confocal laser scanning microscopy (CLSM, TCS SP2, Leica, Germany). The biofouled membrane was collected and cut to pieces for staining using a BacLight live/dead bacterial viability kit (Molecular Probes, USA). Bacteria cells were stained with a dye mixture solution of 1 mL of DI water with 3 μL of SYTO9 and 3 μL of PI for 20 min in a dark room. The colored membranes were rinsed using a PBS solution. SYTO9 was excited at 488 nm, and PI was excited at 559 nm. Fluorescence images revealed green and red spots, corresponding to live bacteria and dead bacteria, respectively.

- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77

. .

- 78
- 79
- 80
- 81

85 Figures

89 Fig. S1 FTIR spectra of bare CNTs, oxide-functionalized CNTs (fCNT), bare support layer (TFC),

- 90 fCNT-blended support layer (fCNT-TFN)

- 94

CNT2.0

100~ Fig. S3 Deposition of fCNTs on the bottom surface of the fCNT-TFC0.5 support layer

Fig. S4 AFM images showing the support layer roughness of the fabricated TFN membranes:

```
113 (a) CNT0, (b) CNT0.5, (c) CNT1, (d) CNT2
```

Table

132 Table S1 List of abbreviation

	Abbreviation	Definition
1	TFN	Thin film nanocomposite
2	TFC	Thin film composite
3	PRO	Pressure-retarded osmosis
4	FO	Forward osmosis
5	SEM	Scanning electron microscopy
6	AFM	Atomic force microscopy
7	FTIR	Fourier transform infrared
8	CLSM	Confocal laser scanning microscopy
9	RSF	Reverse salt flux