Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2019

> Supporting Information available for Predicting viable isomers of [X,C,N] and [H,X,C,N] (X=Sn, Pb) Yu-wang Sun,^a Hai-yan Wang^{*a,b} and Yi-hong Ding^{*a}

> > ^a Institute of Theoretical Chemistry,

Jilin University, Changchun 130023,

People's Republic of China

^b College of Computer Science and Technology,
Changchun University, Changchun 130023,
People's Republic of China

For submission to: RSC Advances

Table of Contents

- **1.** Theoretical methods.
- 2. Table S1 The comparison of the relative energies (in kcal/mol) have been computed through two methods. All the energies were corrected by zero-point energies.
- 3. Fig. S1-S4 Optimized geometries of isomers of the doublet/quartet [X,C,N] and singlet/triplet [H,X,C,N] (X=Sn, Pb) at the B3LYP/def2-qzvpp level. Bond lengths are in angstroms and angles are in degrees.
- 4. Table S2-3 Charge analysis (q, |e|) of ²XCN, ²XNC, ¹HXCN and ¹HXNC (X=Sn, Pb) at the B3LYP/def2-QZVPP level.
- 5. Table S4 The T1 diagnostic values and total (a.u.) and relative (kcal/mol) energies of the doublet/quartet [X,C,N] and singlet/triplet [H,X,C,N] (X=Sn, Pb) structures and transition states at B3LYP/def2-qzvpp and single-point CCSD(T)/def2-qzvpp//B3LYP/def2-qzvpp with inclusion of B3LYP/def2-qzvpp zero-point vibrational energies (ZPVE).
- 6. Table S5-6 Harmonic vibrational frequencies (cm⁻¹), infrared intensities (km/mol) (in parentheses), dipole moment (Debye), and rotational constants (GHZ) of doublet/doublet [X,C,N] and singlet/triplet [H,X,C,N] (X=Sn, Pb) at the B3LYP/def2-qzvpp level.
- 7. Fig. S5 Schematic potential energy surfaces of quartet [X,C,N] (X=Sn, Pb) at the level of CCSD(T)/def2-QZVPP//B3LYP/def2-QZVPP+ZPVE in the parentheses.
- 8. Table S7 Selected standard bond distances (r) (in Å) of reference molecules.
- 9. Table S8 Cartesian coordinates of doublet/doublet [X,C,N] and singlet/triplet [H,X,C,N] (X=Sn, Pb) structures and transition states at the B3LYP/def2-QZVP level of theory.

1. Theoretical methods

GPESS: The GPESS platform includes isomer search and transition state search. The isomer search was based on the grid search program. The transition state search was divided into two types, one is the isomer conversion and the other is the isomer decomposition. For the interconversion TS search, the "QST2" algorithm was applied, which yet has a difficulty in placing atoms in the same atomic order between reactant and product (especially for molecules with many homo-atomic elements). This was treated in GPESS by automatic enumeration of all possible combinations. Besides, the decomposition TS search was considered directing to some relatively stable molecular fragments like N_2 , CO_2 and NO.

Table S1 Computed relative energies (in kcal/mol) at CCSD(T)/def2-QZVPP//B3LYP/def2-QZVPP+ ZPVE and CCSD(T)/def2-QZVPP//PBE0/def2-QZVPP+ZPVE levels. "ZPVE" denote the zeropoint vibrational energy

point vioration	ai chergy.			
Species	CCSD(T)/def2- QZVPP//B3LYP/def2- QZVPP + ZPVE	CCSD(T)/def2-QZVPP// PBE0/def2- QZVPP + ZPVE	Error	Average error
SnCN ² 1	0.00	0.00	0.00	0.0000
SnNC ² 2	4.89	4.87	-0.02	0.0004
CSnN ² 3	174.68	175.14	0.46	0.0093
SnCN ⁴ 1	64.63	64.67	0.05	0.0009
SnNC ⁴ 2	84.92	80.67	-4.25	0.0849
CSnN ⁴ 3	176.91	180.11	3.20	0.0640
<i>c</i> -SnCN ⁴ 4	88.29	85.20	-3.09	0.0617
PbCN ² 1	0.00	0.00	0.00	0.0000
PbNC ² 2	6.40	6.25	-0.14	0.0029
CPbN ² 3	184.98	185.37	0.40	0.0079
PbCN ⁴ 1	81.54	81.16	-0.39	0.0077
PbNC ⁴ 2	84.97	85.20	0.23	0.0045
CPbN 43	187.29	186.98	-0.31	0.0061
<i>c</i> -PbCN ⁴ 4	87.03	88.19	1.16	0.0232
HSnCN ¹ 1	0.00	0.00	0.00	0.0000
HSnNC ¹ 2	4.80	4.78	-0.02	0.0004
SnNCH ¹ 3	34.86	34.87	0.02	0.0003
NSnCH ¹ 4	142.34	142.98	0.64	0.0127
SnCNH ¹ 5	30.82	30.85	0.03	0.0006
CSnNH ¹ 6	149.12	149.02	-0.10	0.0020
<i>c</i> -SnCHN ¹ 7	14.49	14.59	0.10	0.0020
<i>c</i> -SnCNH ¹ 8	38.47	38.52	0.05	0.0010
HSnCN ³ 1	35.69	35.77	0.08	0.0016
HSnNC ³ 2	46.40	46.41	0.01	0.0002
SnNCH ³ 3	20.53	20.89	0.36	0.0072

NSnCH ³ 4	137.57	137.47	-0.10	0.0020
HNCSn ³ 5	25.07	24.99	-0.08	0.0016
CSnNH ³ 6	131.81	131.81	0.00	0.0000
c-SnCHN ³ 7	44.75	45.07	0.32	0.0064
<i>c</i> -SnHNC ³ 8	51.83	51.88	0.05	0.0010
CSn(H)N ³ 9	194.28	196.49	2.21	0.0442
HPbCN ¹ 1	0.00	0.00	0.00	0.0000
HPbNC ¹ 2	5.89	5.85	-0.04	0.0008
PbNCH ¹ 3	32.55	33.09	0.54	0.0107
HCPbN ¹ 4	149.65	150.26	0.61	0.0122
HNCPb ¹ 5	29.86	29.84	-0.03	0.0005
HNPbC ¹ 6	151.76	152.21	0.46	0.0092
<i>c</i> -PbCHN ¹ 7	14.78	14.73	-0.05	0.0010
<i>c</i> -PbCHN ¹ 8	37.30	37.12	-0.18	0.0037
CHPbN ¹ 9	44.90	43.60	-1.30	0.0260
CHPbN ¹ 10	58.30	58.73	0.43	0.0086
PbNHC ¹ 11	33.34	30.80	-2.54	0.0508
HPbCN ³ 1	47.29	47.26	-0.02	0.0004
HPbNC ³ 2	58.25	58.06	-0.19	0.0038
PbNCH ³ 3	14.39	14.70	0.31	0.0062
NPbCH ³ 4	147.84	147.44	-0.40	0.0080
PbCNH ³ 5	20.50	20.95	0.45	0.0089
CPbNH ³ 6	139.91	139.98	0.07	0.0014
c-PbHNC ³ 7	61.22	61.03	-0.19	0.0038
CPb(H)N ³ 8	210.97	213.65	2.68	0.0536

B3LYP/def2-qzvpp level. Bond lengths are in angstroms and angles are in degrees.

2.175	2.206	2.093			
21	² 2	23			
2.251		1.861 2.093			
41	42	43			
23,27 56 7 85.10 1.173					
44					
Figure S2. Optimized geometries of isomers of the doublet and quartet neutral [Pb,C,N] at the					

B3LYP/def2-qzvpp level. Bond lengths are in angstroms and angles are in degrees.

Figure S3. Optimized geometries of isomers of the singlet and triplet neutral [H,Sn,C,N] at the B3LYP/def2-qzvpp level. Bond lengths are in angstroms and angles are in degrees.

Figure S4. Optimized geometries of isomers of the singlet and triplet neutral [H,Pb,C,N] at the B3LYP/def2-qzvpp level. Bond lengths are in angstroms and angles are in degrees.

_	
5	
Э	•

Table S2 Charge analysis (q, |e|) of ²XCN and ²XNC (X=Sn, Pb) at the B3LYP/def2-QZVPP level.

10 / 01.				
Speices	q(X)			
	NPA	Hirshfeld	ADCH	
SiCN ² 1	0.647	0.260	0.208	
GeCN ² 1	0.626	0.292	0.251	
SnCN ² 1	0.670	0.340	0.308	
PbCN ² 1	0.672	0.378	0.356	
SiNC ² 2	0.771	0.248	0.191	
GeNC ² 2	0.743	0.298	0.257	
SnNC ² 2	0.785	0.360	0.327	
PbNC ² 2	0.789	0.411	0.402	

Table S3 Charge analysis (q, e) of ¹ HXCN and ¹ HXNC (X=Sn, Pb) at the B3LYP/def2-QZVPP						
level.	level.					
G	q(X)		q(H)			
Sperces	NPA	Hirshfeld	ADCH	NPA	Hirshfeld	ADCH
HSiCN 11	0.814	0.331	0.151	-0.271	-0.087	0.032
HGeCN ² 1	0.791	0.372	0.233	-0.262	-0.095	0.000
HSnCN ¹ 1	0.670	0.449	0.341	-0.335	-0.123	-0.053
HPbCN ¹ 1	0.946	0.503	0.458	-0.341	-0.138	-0.106
HSiNC ¹ 2	0.985	0.335	0.142	-0.303	-0.099	0.030
HGeNC ¹ 2	0.965	0.398	0.264	-0.293	-0.105	-0.005
HSnNC ¹ 2	0.672	0.484	0.386	-0.363	-0.131	-0.058
HPbNC ¹ 2	1.113	0.548	0.519	-0.370	-0.145	-0.112

5.

Table S4 Relative (kcal/mol) energies of doublet/quartet [X,C,N] and singlet/triplet [H, X,C,N] (X=Sn, Pb) structures and transition states at B3LYP/def2-qzvpp and single-point CCSD(T)/def2-qzvpp//B3LYP/ def2-qzvpp with inclusion of B3LYP/def2-qzvpp zero-point vibrational energies (ZPVE). We have also performed the T1 diagnostics of the relevant structures.

Species	SP+ZPVE	T1 diagnostics
SnCN ² 1	0.00	0.020910
SnNC ² 2	4.89	0.017288
CSnN ² 3	174.68	0.074056
2 ts1/2(2 A')	12.89	0.019953
² ts1/2(² A'')	11.31	0.017178
² ts2/3	174.31	0.103724
SnCN ⁴ 1	64.63	0.033058
SnNC ⁴ 2	84.92	0.062725
CSnN ⁴ 3	176.91	0.075432
<i>c</i> -SnCN ⁴ 4	88.29	0.048961
⁴ ts1/4	91.65	0.058735
⁴ ts2/4	87.91	0.053939
⁴ ts3/4	189.98	0.074052
³ Sn+CN	94.44	
³ C+ ² SnN	255.56	
⁴ N+ ³ SnC	201.78	
PbCN ² 1	0.00	0.016669
PbNC ² 2	6.40	0.014678
CPbN ² 3	184.98	0.064738
2 ts1/2(2 A')	11.21	0.016513
² ts1/2(² A'')	10.05	0.014451
⁴ ts2/3	199.76	0.059523
PbCN ⁴ 1	81.54	0.039748
PbNC ⁴ 2	84.97	0.057624
CPbN ⁴ 3	187.29	0.045168
<i>c</i> -PbCN ⁴ 4	87.03	0.065802
⁴ ts1/4	90.81	0.087195
⁴ ts2/4	87.72	0.053939
⁴ ts3/4	195.70	0.043516
³ Pb+ ² CN	92.27	
³ C+ ² PbN	239.86	
⁴ N+ ³ PbC	196.87	
HSnCN ¹ 1	0.00	0.015488

HSnNC ¹ 2	4.80	0.016519
SnNCH ¹ 3	34.86	0.023648
NSnCH ¹ 4	142.34	0.055991
SnCNH ¹ 5	30.82	0.021294
CSnNH ¹ 6	149.12	0.038119
<i>c</i> -SnCHN ¹ 7	14.49	0.017605
<i>c</i> -SnCNH ¹ 8	38.47	0.019142
¹ ts1/2	11.68	0.016984
¹ ts1/5	69.01	0.032203
¹ ts1/7	51.68	0.015046
¹ ts1/8	54.89	0.021183
¹ ts2/3	81.02	0.027609
¹ ts2/7	148.10	0.106016
¹ ts2/7*	38.90	0.022693
¹ ts2/8	64.61	0.017778
¹ ts3/7	46.14	0.027845
¹ ts4/6	192.66	0.130865
¹ ts4/7	168.67	0.101718
¹ ts5/8	53.10	0.025387
¹ ts6/8	150.71	0.061488
¹ ts7/8	76.30	0.021286
¹ Sn+HCN	50.12	
¹ Sn+HNC	64.40	
HSnCN ³ 1	35.69	0.024380
HSnNC ³ 2	46.40	0.020783
SnNCH ³ 3	20.53	0.025424
NSnCH ³ 4	137.57	0.063966
HNCSn ³ 5	25.07	0.022733
CSnNH ³ 6	131.81	0.089649
<i>c</i> -SnCHN ³ 7	44.75	0.022227
<i>c</i> -SnHNC ³ 8	51.83	0.021422
CSn(H)N ³ 9	194.28	0.096351
³ ts1/3	58.50	0.032684
³ ts1/8	53.01	0.022197
³ ts2/3	65.04	0.025180
³ ts2/7	67.78	0.022420
³ ts2/8	51.96	0.021025
³ ts3/5	60.48	0.029897
³ ts4/9	194.96	0.070548
³ ts5/7	48.82	0.020075
³ ts6/9	205.60	0.088033
³ ts6/7	142.41	0.057099
³ ts8/9	196.46	0.090130

³ Sn+HCN	31.57	
³ Sn+HNC	45.84	
² CH+ ² SnN	187.79	
³ NH+ ³ SnC	187.48	
² H+ ² CSnN	237.32	
HSn+CN	97.30	
² H+ ² SnCN	62.63	
² H+ ² SnNC	67.52	
HPbCN ¹ 1	0.00	0.014245
HPbNC ¹ 2	5.89	0.015083
PbNCH ¹ 3	32.55	0.015305
HCPbN ¹ 4	149.65	0.049274
HNCPb ¹ 5	29.86	0.022209
HNPbC ¹ 6	151.76	0.042286
<i>c</i> -PbCHN ¹ 7	14.78	0.013927
<i>c</i> -PbCHN ¹ 8	37.30	0.019809
CHPbN ¹ 9	44.90	0.019238
CHPbN ¹ 10	58.30	0.020286
PbNHC ¹ 11	33.34	0.019075
¹ Pb+HNC	58.30	
¹ Pb+HCN	44.01	
¹ ts1/2	9.63	0.015209
¹ ts1/5	65.43	0.028527
¹ ts1/7	44.03	0.013475
¹ ts2/11	29.65	0.015507
¹ ts2/9	42.23	0.016548
¹ ts3/10	75.38	0.021055
¹ ts3/7	37.76	0.012472
¹ ts4/6	203.56	0.112200
¹ ts4/7	159.70	0.090438
¹ ts5/8	49.67	0.037089
¹ ts6/8	159.95	0.056816
¹ ts7/11	34.06	0.020461
¹ ts7/8	73.22	0.024633
¹ ts8/10	57.52	0.016991
¹ ts8/9	48.60	0.017335
HPbCN ³ 1	47.29	0.019888
HPbNC ³ 2	58.25	0.018580
PbNCH ³ 3	14.39	0.016882
NPbCH ³ 4	147.84	0.057635
PbCNH ³ 5	20.50	0.016727
CPbNH ³ 6	139.91	0.068879

<i>c</i> -PbHNC ³ 7	61.22	0.018547
CPb(H)N ³ 8	210.97	0.059222
³ ts1/3	55.92	0.021741
³ ts1/5	53.35	0.023508
³ ts1/7	61.50	0.019765
³ ts1/8	209.49	0.062674
³ ts2/7	61.49	0.018011
³ ts3/5	66.64	0.017658
³ ts4/8	210.30	0.062718
³ ts6/8	220.54	0.035097
³ ts7/8	206.23	0.127857
³ Pb+HCN	25.36	
³ Pb+HNC	39.63	
² CH+ ² PbN	190.76	
³ NH+ ³ PbC	178.53	
² H+ ² CPbN	243.57	
HPb+CN	93.96	
² H+ ² PbCN	58.60	
² H+ ² PbNC	64.99	

6.

Table S5 Harmonic vibrational frequencies (cm⁻¹), infrared intensities (km/mol) (in parentheses), dipole moment (Debye), and rotational constants (GHZ) of doublet/doublet [Sn,C,N] and [Pb,C,N] at the B3LYP/def2-qzvpp level.

Species	Frequencies (infrared intensity)	Dipole moments (Debye)	Rotational constants (GHZ)
SnCN ² 1	159(3), 219(0), 370(65), 2210(19)	4.7742	2.87844
SnNC ² 2	140(0), 401(92), 2090(328)	4.7679	3.23304
CSnN ² 3	104(12), 523(71), 793(14)	2.0840	4.99979
SnCN ⁴ 1	273(0), 273(0), 375(0), 2140(14)	3.7183	3.04861
SnNC ⁴ 2	212(10), 212(10), 247(37), 2030(195)	0.0314	3.08090
CSnN ⁴ 3	172(27), 172(27), 491(5), 718(7)	1.6623	5.07940
<i>c</i> -SnCN ⁴ 4	136(43), 200(16), 1921(107)	1.2570	55.8282357 4.1594252 3.8710189
PbCN ² 1	150(1), 323(66), 2214(21)	5.6974	2.4846333
PbNC ² 2	45(0), 110(0), 343(90), 2100(345)	5.9103	2.7550782
CPbN ² 3	115(12), 487(63), 727(4)	2.0090	4.7709116
PbCN ⁴ 1	234(0), 234(0), 236(6), 2060(44)	2.7677	2.5200082
PbNC ⁴ 2	179(4), 183(16), 193(16), 2047(682)	1.5485	2.3803909
CPbN ⁴ 3	43(19), 58(11), 450(12), 2060(44)	0.3162	4.3541923
<i>c</i> -PbCN ⁴ 4	109(3), 179(23), 2008(170)	1.0635	57.5444298 2.7430372 2.6182309

Table S6 Harmonic vibrational frequencies (cm⁻¹), infrared intensities (km/mol) (in parentheses), dipole moment (Debye), and rotational constants (GHZ) of singlet/triplet [H,Sn,C,N] and [H,Pb,C,N] at the B3LYP/def2-qzvpp level.

		Dipole			
Species	Frequencies (infrared intensity)	moments	Rotational constan	nts (GHZ)	
		(Debye)			
HSnCN ¹ 1	164(4), 203(3), 3737(69), 626(55), 1746(361), 2246(39)	4.7842	158.4060773	2.8550646	2.8045168
HSnNC ¹ 2	94(2), 131(1), 410(98), 629(50), 1735(414), 2117(373)	4.8126	152.0822952	3.2327890	3.1655005
SnNCH ¹ 3	170(2), 285(40), 351(110),767(1120), 1802(611), 3031(33)	1.0547	865.2329686	3.0541690	3.0434260
NSnCH ¹ 4	122(11), 143(7), 528(22), 793(5), 808(40), 2976(16)	3.3513	241.8777821	4.8760432	4.7796889
SnCNH ¹ 5	206(1), 286(41), 390(1), 905(526), 1823(531), 3360(16)	1.1647	763.8556690	2.7858281	2.7757050
CSnNH ¹ 6	92(12), 293(115), 464(115), 546(29), 796(37), 3592(82)	2.0901	120.3884692	4.8403120	4.6532254
<i>c</i> -SnCHN ¹ 7	405(15), 552(50), 758(30), 1064(131), 1600(93), 2998(59)	2.3879	42.1832507	5.1225551	4.5678543
<i>c</i> -SnCNH ¹ 8	359(1), 497(48), 641(65), 1060(64), 1503(124), 3361(5)	2.5539	42.5527581	4.8671160	4.3675614
HCNSn ³ 1	204(2), 251(0), 400(31), 496(18), 1719(31), 2220(4)	4.3600	211.1244519	2.9859452	2.9443037
HNCSn ³ 2	124(0), 164(0), 427(46), 465(11), 1625(15), 2100(234)	4.3352	193.9186054	3.2975964	3.2424583
SnNCH ³ 3	189(30), 201(6), 598(19), 602(26), 2067(571), 3435(513)	3.9622	291333.4488043	2.6074545	2.6074311
NSnCH ³ 4	104(5), 306(15), 577(59), 613(82), 675(41), 3159(2)	2.8155	70.2637648	5.1124139	4.7656628
SnCNH ³ 5	230(49), 243(12), 279(207), 397(350), 1943(1001), 3681(338)	2.4091	2122.9149338	2.6465634	2.6432681
CSnNH ³ 6	82(9), 211(56), 483(1), 578(120), 773(11), 3515(37)	2.3900	96.6928520	4.8559605	4.6237535
<i>c</i> -SnCHN ³ 7	189(12), 196(29), 455(90), 695(184), 1753(305), 3052(59)	1.8627	46.2546401	3.8522885	3.5561194
<i>c</i> -NHSnC ³ 8	147(9), 209(1), 376(36), 438(10), 1591(14), 1945(7)	3.3425	44.0065826	4.6542780	4.3940424
NSnCH ³ 9	77(11), 173(17), 363(16), 521(38), 534(25), 1816(127)	2.1078	19.6859487	5.8964081	4.5615705
HPbCN ¹ 1	150(2),183(3), 329(67), 562(42), 1629(445), 2242(38)	5.7488	145.7645480	2.4689069	2.4277859
HPbNC ¹ 2	62(2), 103(2), 358(90), 554(39), 1616(486), 2118(367)	5.9723	139.0559261	2.7667664	2.7127906
PbNCH ¹ 3	148(22), 204(4), 254(33), 801(23), 2075(644), 3438(536)	3.2505	551891.37741	0.10698	0.10698

HCPbN ¹ 4	132(10), 145(4), 489(22), 734(4), 865(24), 2943(27)	3.1987	294.0896744	4.5825580	4.5122473
HNCPb ¹ 5	190(4), 259(46), 326(3), 843(625), 1836(669), 3380(19)	1.2179	804.2800496	2.3828401	2.3758013
HNPbC ¹ 6	101(6), 130(6), 533(24, 650(16), 909(37), 3397(17)	1.6083	303.1188083	4.4845332	4.4191534
<i>c</i> -PbCHN ¹ 7	170(2), 221(0), 335(37), 393(5), 1341(7), 2214(12)	4.9044	190.1130301	2.5635217	2.5294146
<i>c</i> -PbCHN ¹ 8	295(1), 437(54), 599(72), 983(99, 1571 (196), 3383(11)	2.6518	43.5624126	3.9126136	3.5901589
CHPbN ¹ 9	229(7), 444(21), 655(4), 775(660), 1749(259), 2158(219)	3.7619	45.00220	3.49389	3.24217
CHPbN ¹ 10	87(18), 107(1), 189(46), 823(273), 1918(57), 250(1890)	3.4663	365.7808763	2.1152633	2.1031014
PbNHC ¹ 11	175(181), 431(181), 516(705), 775(6), 1832(330), 2598(96)	3.3060	43.2963678	3.5211683	3.2563397
HPbCN ³ 1	170(2), 221(0), 335(37), 393(5), 1341(7), 2214(12)	4.9044	190.1130301	2.5635217	2.5294146
HPbNC ³ 2	89(0), 130(0), 328(20), 334(12), 1103(27), 2093(133)	5.0574	164.8698876	2.7692292	2.7234843
PbNCH ³ 3	161(31), 171(2), 671(22), 673(26), 2125(354), 3436(425)	3.8916	1427740.8915008	2.1315915	2.1315883
NPbCH ³ 4	105(7), 259(21), 517(37), 533(74), 696(98), 3093 (10)	2.5682	83.5155922	4.6597915	4.4135362
PbCNH ³ 5	149(130), 149(130), 208(5), 208(5), 236(3), 2024(1035), 3822(934)	3.1624	0.0000000	2.1722489	2.1722489
CPbNH ³ 6	71(11), 173(47), 431(3), 628(88), 729(19), 3446(20)	2.2669	115.2486825	4.4170551	4.2540145
<i>c</i> -PbHNC ³ 7	103(8), 156(1), 297(2), 320(39), 1058(16), 197(9)	4.2260	42.5414493	3.8068986	3.6386664
CPb(H)N ³ 8	76(14), 209(5), 258(9), 477(95), 510(2), 1702(134)	1.6524	25.9536307	5.0991843	4.2618470

	r(X-C)	r(X=C)	r(X-N)	r(X=N)
X	XH ₃ -CH ₃	XH ₂ =CH ₂	XH ₃ -NH ₂	XH ₂ =NH
С	1.527	1.324	1.436	1.263
Si	1.877	1.701	1.738	1.593
Ge	1.965	1.775	1.853	1.710
Sn	2.159	1.960	2.049	1.909
Pb	2.242	2.017	2.161	1.997

7. Table S7 Selected standard bond distances (r) (in Å) of reference molecules.

8.

Fig. S5 Schematic potential energy surfaces of quartet [X,C,N] (X=Sn, Pb) at the level of CCSD(T)/def2-QZVPP//B3LYP/def2-QZVPP+ZPVE in the parentheses.

CNSn_doublet_1-B3LYP-def2-qzvpp

Ν	0.000000	0.000000	-2.756016
С	0.000000	0.000000	-1.597546
Sn	0.000000	0.000000	0.577548

CNSn_doublet_2-B3LYP-def2-qzvpp

С	0.000618	-2.720656	0.000000
Ν	-0.000529	-1.544804	0.000000
Sn	0.000000	0.542751	0.000000

$CNSn_doublet_3\text{-}B3LYP\text{-}def2\text{-}qzvpp$

С	0.092172	2.098703	0.000000
Sn	0.000000	0.007437	0.000000
Ν	-0.079005	-1.852010	0.000000

CNSn_doublet_ts1-B3LYP-def2-qzvpp

С	0.588042	-1.686478	0.000000
N	-0.504036	-2.109737	0.000000
Sn	0.000000	0.497741	0.000000

CNSn_doublet_ts2-B3LYP-def2-qzvpp

С	0.630082	-1.873185	0.000000
Ν	-0.540071	-1.807291	0.000000
Sn	0.000000	0.477803	0.000000

CNSn_doublet_ts3-B3LYP -def2-qzvpp

С	1.556792	-1.190815	0.000000
N	-1.334393	-1.084525	0.000000
Sn	0.000000	0.294731	0.000000

CNSn_quartet_1-B3LYP-def2-qzvpp

N	0.000000	0.000000	-2.691129
С	0.000000	0.000000	-1.528984
Sn	0.000000	0.000000	0.560236

CNSn_quartet_2-B3LYP-def2-qzvpp

С	0.000000	0.000000	-2.772487
Ν	0.000000	0.000000	-1.601565
Sn	0.000000	0.000000	0.556918

CNSn_quartet_3-B3LYP-def2-qzvpp

С	0.000000	0.000000	2.062037
Sn	0.000000	0.000000	0.012975
N	0.000000	0.000000	-1.860140

CNSn_quartet_4-B3LYP-def2-qzvpp

С	0.637304	-1.892375	0.000000
Ν	-0.546261	-1.897874	0.000000
Sn	0.000000	0.492787	0.000000

CNSn_quartet_ts1-B3LYP -def2-qzvpp

С	0.559448	-2.378560	0.000000
N	-0.479527	-1.838474	0.000000
Sn	0.000000	0.542814	0.000000

CNSn_quartet_ts2-B3LYP -def2-qzvpp

С	0.591310	-1.751184	0.000000
N	-0.506837	-2.163287	0.000000
Sn	0.000000	0.513002	0.000000

CNSn_quartet_ts3-B3LYP -def2-qzvpp

С	1.600614	-1.031663	0.000000
N	-1.371955	-1.291029	0.000000
Sn	0.000000	0.304544	0.000000

HCNSn_singlet_1-B3LYP-def2-qzvpp

N	-0.207592	-2.764053	0.000000
Н	1.773459	0.541982	0.000000
С	-0.053385	-1.618378	0.000000
Sn	0.000000	0.570333	0.000000

HCNSn_singlet_2-B3LYP-def2-qzvpp

Η	1.777635	0.559912	0.000000
Sn	0.000000	0.532876	0.000000
С	-0.266645	-2.711190	0.000000
Ν	-0.025395	-1.562369	0.000000

HCNSn_singlet_3-B3LYP-def2-qzvpp

С	-0.103730	-2.651206	0.000000
Н	0.679856	-3.412676	0.000000
Ν	-0.008211	-1.455348	0.000000
Sn	0.000000	0.590147	0.000000

HCNSn_singlet_4-B3LYP-def2-qzvpp

С	1.548113	-1.299297	0.000000
Sn	0.000000	0.051243	0.000000
Н	2.485746	-0.713610	0.000000
Ν	-1.682061	0.849605	0.000000

HCNSn_singlet_5-B3LYP-def2-qzvpp

Н	0.719009	-3.286575	0.000000
Ν	-0.106295	-2.682846	0.000000
Sn	0.000000	0.618218	0.000000
С	0.004176	-1.474070	0.000000

HCNSn_singlet_6-B3LYP-def2-qzvpp

Н	-2.410340	-1.071490	0.000000
N	-1.401380	-1.131560	0.000000
Sn	0.000000	0.100063	0.000000
С	2.036666	0.664879	0.000000

HCNSn_singlet_7-B3LYP-def2-qzvpp

Η	1.279053	-2.436269	0.000000
С	0.575132	-1.597957	0.000000
Ν	-0.675692	-1.625329	0.000000
Sn	0.000000	0.468026	0.000000

HCNSn_singlet_8-B3LYP-def2-qzvpp

Н	-1.187993	-2.349775	0.000000
Ν	-0.491349	-1.604745	0.000000
С	0.771239	-1.729642	0.000000
Sn	0.000000	0.479217	0.000000

HCNSn_singlet_1_HCNSn_singlet_2-B3LYP-def2-

qzvpp		
Н	-0.562877	0.312820

Н	-0.562877	0.312820	1.711716
С	1.872139	0.618860	-0.071718
Ν	1.815692	-0.541700	0.073197
Sn	-0.467596	-0.004682	-0.035876

HCNSn_singlet_1_HCNSn_singlet_5-B3LYP-def2-

qzvpp			
Sn	-0.617796	0.000854	-0.000001
Н	1.942136	1.020587	0.000024
Ν	2.783648	-0.033018	0.000006
С	1.577019	-0.138696	0.000001

HCNSn_singlet_1_HCNSn_singlet_7-B3LYP-def2-qzvpp

Η	-1.406114	1.116632	0.000010
С	-2.151673	0.305183	0.000003
Ν	-3.141279	-0.282598	-0.000002
Sn	0.726102	-0.019391	0.000000

HCNSn_singlet_1_HCNSn_singlet_8-B3LYP-def2-qzvpp

Η	-1.748380	1.441401	0.000003
С	-1.833448	-0.763815	-0.000001
Ν	-1.902668	0.443195	0.000001
Sn	0.521355	0.000782	0.000000

$HCNSn_singlet_2_HCNSn_singlet_3-B3LYP-def2-qzvpp$

Н	-2.192750	1.022629	0.000287
С	-2.856460	-0.133869	0.000128
N	-1.641550	-0.005269	0.000077
Sn	0.616447	-0.003651	-0.000032

HCNSn_singlet_2_HCNSn_singlet_7-B3LYP-def2-qzvpp*

Н	2.177984	0.754107	0.842813
С	1.861240	0.426311	-0.167311
Ν	-0.799752	1.532326	-0.012795
Sn	-0.154943	-0.280765	0.005012

$HCNSn_singlet_2_HCNSn_singlet_7-B3LYP-def2-qzvpp$

Н	1.566438	-1.629341	0.000000
С	0.516761	-1.921844	0.000000
Ν	-0.666715	-1.704067	0.000000
Sn	0.000000	0.501777	0.000000

HCNSn_singlet_2_HCNSn_singlet_8-B3LYP-def2-qzvpp

Н	1.446218	1.054610	0.000053
С	3.122603	-0.254001	0.000012
Ν	2.030327	0.186917	-0.000016
Sn	-0.687883	-0.016780	0.000000

$HCNSn_singlet_3_HCNSn_singlet_7\text{-}B3LYP\text{-}def2\text{-}$

qzvpp			
Н	3.037883	-0.717828	0.500849
С	2.214415	-0.361045	-0.126615
N	1.497941	0.598649	0.021037
Sn	-0.536199	-0.026129	0.002232

HCNSn_singlet_4_HCNSn_singlet_6-B3LYP-def2qzvpp N 1.880609 -0.278411 0.000572 Sn -0.020323 0.032101 -0.000187 C -2.109435 -0.224275 0.000665

Н	0.508513	1.689493	0.001367

$HCNSn_singlet_4_HCNSn_singlet_7\text{-}B3LYP\text{-}def2\text{-}qzvpp$

Н	2.354125	-1.687966	0.000000
С	1.406553	-1.141230	0.000000
Ν	-1.541920	-1.043353	0.000000
Sn	0.000000	0.316776	0.000000

HCNSn_singlet_5_HCNSn_singlet_8-B3LYP-def2-qzvpp H 2.782444 -0.706095 0.498074

11	2.702111	0.700075	0.190071
С	1.544915	0.746682	0.015980

Ν	2.018050	-0.389664	-0.103700
Sn	-0.523566	-0.020927	0.002639

HCNSn_	_singlet_6_H	ICNSn_single	et_8-B3LYP-de	f2-
qzvpp				
Н	1.838838	1.222396	0.671078	
С	-1.209049	1.507089	-0.024536	
N	1.637830	0.604558	-0.119835	
Sn	-0.120987	-0.289937	0.006300	

 $HCNSn_singlet_7_HCNSn_singlet_8-B3LYP-def2-$

qzvpp			
Н	-0.039416	-2.740525	0.000000
С	0.693704	-1.692190	0.000000
N	-0.588972	-1.680125	0.000000
Sn	0.000000	0.493091	0.000000

HCNSn_triplet_1-B3LYP-def2-qzvpp

Н	1.583789	1.237021	0.000000
Sn	0.000000	0.543530	0.000000
С	-0.065371	-1.565326	0.000000
N	-0.170223	-2.717369	0.000000

HCNSn_triplet_2-B3LYP-def2-qzvpp

Н	1.634337	1.130639	0.000000
Sn	0.000000	0.516090	0.000000
N	-0.046595	-1.535518	0.000000
С	-0.218028	-2.697752	0.000000

HCNSn_triplet_3-B3LYP-def2-qzvpp

Н	-3.861355	0.021255	0.000175
С	-2.796744	0.002555	-0.000070
Ν	-1.643452	-0.009276	0.000040
Sn	0.642920	0.000567	-0.000001

HCNSn_triplet_4-B3LYP-def2-qzvpp

Η	2.790939	-0.372754	0.000000
С	1.773175	-0.752686	0.000000
Sn	0.000000	0.120494	0.000000
Ν	-1.918570	-0.162260	0.000000

HCNSn_triplet_5-B3LYP-def2-qzvpp

Sn	0.000000	0.649549	0.000000
С	-0.000781	-1.573112	0.000000
Н	0.004367	-3.757076	0.000000
Ν	0.000045	-2.754529	0.000000

HCNSn_triplet_6-B3LYP-def2-qzvpp

Н	-2.405577	-0.805048	0.000000
Ν	-1.436611	-1.113445	0.000000
Sn	0.000000	0.106885	0.000000
С	2.076976	0.542486	0.000000

HCNSn_triplet_7-B3LYP-def2-qzvpp

Н	-1.135410	-2.680986	0.000000
Ν	-0.470463	-1.916708	0.000000
С	0.738108	-1.809289	0.000000
Sn	0.000000	0.539073	0.000000

HCNSn_triplet_8-B3LYP-def2-qzvpp

С	-1.880883	-0.598669	0.091737
Ν	-1.686306	0.571494	-0.007895
Sn	0.437774	-0.012590	-0.040281
Н	1.200736	0.221047	1.518891

HCNSn_triplet_9-B3LYP-qzvpp-1

Н	0.217825	-1.821137	0.435630
С	-1.859863	0.875727	0.062636
Ν	1.767469	0.801013	0.046200
Sn	-0.028619	-0.180806	-0.022697

HCNSn_triplet_1_HCNSn_triplet_3-B3LYP-def2-qzvpp

Sn	-0.590478	-0.017326	-0.000021
С	1.607001	-0.115930	0.000059
Ν	2.770582	-0.009741	0.000099
Н	0.487829	1.630066	-0.000004

HCNSn_triplet_1_HCNSn_triplet_8-B3LYP-def2-qzvpp

Н	1.090942	1.290991	0.927605
Sn	0.453030	-0.025541	-0.026113
С	-1.696578	-0.592621	0.215753
Ν	-1.937570	0.505967	-0.130928

HCNSn_triplet_2_HCNSn_triplet_3-B3LYP-def2-qzvpp

23

Н	-0.320080	1.734354	0.000027
С	-2.146433	0.470337	-0.000002
Ν	-1.648009	-0.591138	-0.000021
Sn	0.494695	-0.008368	0.000003

HCNSn_triplet_2_HCNSn_triplet_7-B3LYP-def2-qzvpp

Н	-0.813172	1.391791	0.000002
С	-2.811268	-0.037840	0.000011
Ν	-1.626245	-0.075751	0.000006
Sn	0.581290	-0.012690	-0.000002

HCNSn_triplet_2_HCNSn_triplet_8-B3LYP-def2-qzvpp

Н	1.204904	0.163173	1.532270
Sn	0.451925	-0.018637	-0.039587
С	-2.080366	-0.527835	0.082299
Ν	-1.616997	0.562243	-0.006675

HCNSn_triplet_3_HCNSn_triplet_5-B3LYP-def2-qzvpp

Sn	-0.627731	-0.001733	-0.000002
Н	2.037158	1.051528	0.000025
Ν	2.815432	-0.076364	0.000006
С	1.606899	-0.071725	0.000003

HCNSn_triplet_4_HCNSn_triplet_9-B3LYP-def2-qzvpp

Н	-0.720285	1.654480	0.000001
Ν	1.931400	-0.255794	0.000000
Sn	-0.009614	0.048244	0.000000
С	-2.053139	-0.379352	0.000000

HCNSn_triplet_5_HCNSn_triplet_7-B3LYP-def2-qzvpp

		_ 1	—
Sn	0.000000	0.568661	0.000000
С	0.619650	-1.612954	0.000000
Ν	-0.455417	-2.217100	0.000000
Н	-0.529980	-3.235632	0.000000

HCNSn_triplet_6_HCNSn_triplet_9-B3LYP-def2-qzvpp

Η	0.870376	1.581849	0.000178
Ν	1.869456	-0.410206	0.000042
Sn	-0.023725	0.064010	-0.000016
С	-2.128390	-0.318485	0.000057

HCNSn_triplet_6_HCNSn_triplet_7-B3LYP-def2-qzvpp

Н	1.440093	1.753694	0.000327
С	-1.669617	1.180302	0.000098
Ν	1.628871	0.745861	0.000168
Sn	-0.056490	-0.281131	-0.000042

HCNSn_triplet_8_HCNSn_triplet_9-B3LYP-def2-qzvpp

Н	-1.670574	-0.741496	0.687306
С	1.341715	1.267126	0.081374
Ν	1.373841	-1.149976	0.009869
Sn	-0.319932	0.023771	-0.024893

CNPb_doublet_1-B3LYP-def2-qzvpp

N	-0.008848	-3.039857	0.000000
С	0.010322	-1.881774	0.000000
Pb	0.000000	0.397191	0.000000

CNPb_doublet_2-B3LYP-def2-qzvpp

		-	
С	0.000000	0.000000	-3.004326
Ν	0.000000	0.000000	-1.829789
Pb	0.000000	0.000000	0.376030

CNPb_doublet_3-B3LYP-def2-qzvpp

С	1.668569	1.335678	0.000000
Pb	0.000000	0.010349	0.000000
Ν	-1.430202	-1.266097	0.000000

$CNPb_doublet_ts1\text{-}B3LYP\text{-}def2\text{-}qzvpp$

С	0.591949	-1.943678	0.000000
N	-0.507385	-2.347028	0.000000
Pb	0.000000	0.342576	0.000000

CNPb_doublet_ts2-B3LYP-def2-qzvpp

С	0.628841	-2.141659	0.000000
N	-0.539006	-2.034675	0.000000
Pb	0.000000	0.330399	0.000000

25

CNPb_doublet_ts3-def2-qzvpp-B3LYP

С	1.506304	-1.496854	0.000000
Ν	-1.291118	-1.321775	0.000000
Pb	0.000000	0.222360	0.000000

CNPb_quartet_1-B3LYP-def2-qzvpp

N	0.000000	0.000000	-3.025077
С	0.000000	0.000000	-1.856929
Pb	0.000000	0.000000	0.394111

CNPb_quartet_2-B3LYP-def2-qzvpp

С	0.000000	0.000000	-3.189310
N	0.000000	0.000000	-2.023152
Pb	0.000000	0.000000	0.406072

CNPb_quartet_3-B3LYP-def2-qzvpp

С	0.000000	0.000000	2.189949
Pb	0.000000	0.000000	0.014207
Ν	0.000000	0.000000	-2.043518

CNPb_quartet_4-B3LYP-def2-qzvpp

Ν	-0.538206	-2.378642	0.000000
С	0.627907	-2.503517	0.000000
Pb	0.000000	0.386239	0.000000

CNPb_quartet_ts1-def2-qzvpp-B3LYP

С	0.499330	-2.432927	0.000000
Ν	-0.427997	-3.136244	0.000000
Pb	0.000000	0.445747	0.000000

CNPb_quartet_ts2-def2-qzvpp-B3LYP

С	0.540907	-2.983648	0.000000
Ν	-0.463635	-2.397541	0.000000
Pb	0.000000	0.422984	0.000000

CNPb_quartet_ts3-def2-qzvpp-B3LYP

С	1.417358	-1.492894	0.000000
Ν	-1.214879	-1.762382	0.000000
Pb	0.000000	0.259683	0.000000

HCNPb_singlet_1-B3LYP-def2-qzvpp

Ν	-0.210242	-3.043361	0.000000
Н	1.847547	0.363927	0.000000
С	-0.062642	-1.896487	0.000000
Pb	0.000000	0.394128	0.000000

HCNPb_singlet_2-B3LYP-def2-qzvpp

Н	1.851963	0.404534	0.000000
Pb	0.000000	0.370471	0.000000
Ν	-0.026550	-1.838990	0.000000
С	-0.277685	-2.985033	0.000000

HCNPb_singlet_3-B3LYP-def2-qzvpp

С	0.001002	-3.113953	0.000000
Η	0.003050	-4.178537	0.000000
Ν	-0.001295	-1.959713	0.000000
Pb	0.000000	0.446101	0.000000

HCNPb_singlet_4-B3LYP-def2-qzvpp

Н	2.386699	-1.044619	0.000000
Pb	0.000000	0.027289	0.000000
С	1.403542	-1.556419	0.000000
Ν	-1.543993	1.163635	0.000000

HCNPb_singlet_5-B3LYP-def2-qzvpp

Ν	-0.103102	-2.984544	0.000000
Н	0.701466	-3.613050	0.000000
С	0.003374	-1.780359	0.000000
Pb	0.000000	0.429110	0.000000

HCNPb_singlet_6-B3LYP-def2-qzvpp H -1.823972 -1.666088 0.000000

Ν	-0.803674	-1.774993	0.000000
Pb	0.000000	0.044752	0.000000
С	1.241615	1.736897	0.000000

HCNPb_singlet_7-B3LYP-def2-qzvpp

Н	1.306421	-2.667461	0.000000
С	0.564753	-1.862827	0.000000
Ν	-0.670705	-1.908334	0.000000
Pb	0.000000	0.331741	0.000000

HCNPb_singlet_8-B3LYP-def2-qzvpp

0.000000
0.000000
0.000000
0.000000

HCNPb_singlet_9-B3LYP-def2-qzvpp

		-	
Н	1.296183	-1.473066	0.000000
Ν	0.454904	-2.195941	0.000000
С	-0.746752	-2.040384	0.000000
Pb	0.000000	0.354719	0.000000

HCNPb_singlet_10-B3LYP-def2-qzvpp

Η	1.619161	1.010947	0.000152
С	3.316895	-0.152692	0.000005
Ν	2.150860	0.074792	0.000120
Pb	-0.446056	-0.007541	-0.000012

HCNPb_singlet_11-B3LYP-def2-qzvpp

Н	1.448633	-1.443285	0.000000
Pb	0.000000	0.341568	0.000000
С	0.526875	-2.172731	0.000000
Ν	-0.658555	-1.932700	0.000000

HCNPb_singlet_1_HCNPb_singlet_2-B3LYP-def2-

28

qzvpp			
Н	0.433988	0.351295	1.793598
С	-2.142993	0.610213	-0.083351
N	-2.035913	-0.544449	0.086477
Pb	0.325309	-0.002456	-0.023156

HCNPb_singlet_1_HCNPb_singlet_5-B3LYP-def2-

qzvpp			
Н	1.015855	-2.236687	0.000000
С	-0.160453	-1.901094	0.000000
Ν	-0.007591	-3.097180	0.000000
Pb	0.000000	0.430774	0.000000

HCNPb_singlet_2_HCNPb_singlet_11-B3LYP-def2qzvpp H 1.430074 -1.127425 0.000000 C 0.526477 -2.161799 0.000000

Ν	-0.655562	-1.886685	0.000000
Pb	0.000000	0.332988	0.000000

HCNPb_singlet_2_HCNPb_singlet_9-B3LYP-def2qzvpp H -1.241733 1.310059 0.000025

С	-2.005317	-0.730340	-0.000015
N	-2.164484	0.467946	0.000008
Pb	0.346647	-0.002483	0.000000

HCNPb_singlet_3_HCNPb_singlet_10-B3LYP-def2qzvpp H 2.589562 1.019495 0.000011 C 3.180179 -0.138351 0.000014 N 1.974186 -0.004874 -0.000020 Pb -0.432804 -0.001894 0.000001

HCNPb_singlet_3_HCNPb_singlet_7-B3LYP-def2qzvpp H 3.770299 1.091928 0.000037

С	3.058967	0.296970	-0.000012
Ν	2.303276	-0.562609	0.000005
Pb	-0.466427	0.012982	0.000000

HCNP	b_singlet_4_H	ICNPb_singl	et_6-B3LYP-de	ef2-
qzvpp				
N	-1.945293	-0.386066	0.000111	
С	2.110719	-0.329121	0.000107	
Н	-0.681180	1.686186	-0.000071	
Pb	0.019926	0.036476	-0.000016	

HCNPb_singlet_4_HCNPb_singlet_7-B3LYP-def2qzvpp H -2.348946 0.677765 0.865180 C -2.048416 0.400146 -0.167674 N 0.681026 1.753295 -0.011592

HCNPb singlet 5 HCNPb singlet 8-B3LYP-def2-

0.002707

qzvpp			
Н	3.077158	-0.756558	0.470569
С	1.861810	0.740756	0.019166
N	2.315264	-0.389041	-0.099943
Pb	-0.371401	-0.011765	0.001391

0.120393 -0.187216

Pb

HCNPb_singlet_6_HCNPb_singlet_8-B3LYP-def2qzvpp Η -1.925249 1.338598 0.674191 С 1.649755 -0.026615 1.280819 Ν -1.789381 0.700123 -0.117907 Pb 0.082512 -0.196805 0.003791

HCNPb_singlet_7_HCNPb_singlet_11-B3LYP-def2qzvpp H 1.537284 -1.799268 0.000000 C 0.514944 -2.209560 0.000000 N -0.660992 -2.012712 0.000000

D1			
Pb	0.000000	0.355434	0.000000

HCNPb	_singlet_7_H	ICNPb_single	et_8-B3LYP-def	12-
qzvpp				
Н	-0.008913	-3.094821	0.000000	
С	0.673865	-2.021243	0.000000	

Ν	-0.576325	-2.027390	0.000000
Pb	0.000000	0.358707	0.000000

HCNPb_singlet_8_HCNPb_singlet_10-B3LYP-def2azvpp

q2 vpp			
Н	-1.699122	1.029270	0.000057
С	-3.389919	-0.209785	0.000015
N	-2.260826	0.137685	-0.000015
Pb	0.461761	-0.008956	-0.000001

HCNPb_singlet_8_HCNPb_singlet_9-B3LYP-def2qzvpp

Н	2.081406	1.438894	0.000002
С	2.190546	-0.751485	0.000000
Ν	2.223006	0.441728	0.000000
Pb	-0.375436	-0.000269	0.000000

HCNPb_triplet_1-B3LYP-def2-qzvpp

Н	1.667981	1.147313	0.000000
Pb	0.000000	0.376877	0.000000
С	-0.076397	-1.844452	0.000000
Ν	-0.172800	-2.997791	0.000000

HCNPb_triplet_2-B3LYP-def2-qzvpp

Н	1.784491	0.977089	0.000000
Pb	0.000000	0.363156	0.000000
С	-0.191699	-2.995672	0.000000
N	-0.090614	-1.825981	0.000000

HCNPb_triplet_3-B3LYP-def2-qzvpp

Н	0.010137	-4.237795	0.000000
С	0.002504	-3.172602	0.000000
Ν	-0.003595	-2.023850	0.000000
Pb	0.000000	0.456590	0.000000

HCNPb_triplet_4-B3LYP-def2-qzvpp

Н	2.797969	-0.163355	0.000000
С	1.876501	-0.750331	0.000000
Pb	0.000000	0.067802	0.000000

-2.008139 -0.127774 0.000000

HCNPb_triplet_5-B3LYP-def2-qzvpp

Ν

Н	0.000000	0.000000	-4.069390
Ν	0.000000	0.000000	-3.074825
С	0.000000	0.000000	-1.905893
Pb	0.000000	0.000000	0.451567

HCNPb_triplet_6-B3LYP-def2-qzvpp

Н	-2.377522	-0.941089	0.000000
Ν	-1.424460	-1.310627	0.000000
Pb	0.000000	0.062983	0.000000
С	2.058123	0.825141	0.000000

HCNPb_triplet_7-B3LYP-def2-qzvpp

С	-2.144743	-0.575213	0.184528
Ν	-1.962673	0.564926	-0.089407
Pb	0.310532	-0.013684	-0.024838
Η	1.143578	0.618841	1.555405

HCNPb_triplet_8-def2-qzvpp-B3LYP

Н	-0.429329	1.821515	0.000000
Pb	0.000000	0.095655	0.000000
Ν	-1.745259	-1.049241	0.000000
С	2.107691	-0.386757	0.000000

HCNPb_triplet_1_HCNPb_triplet_3-B3LYP-def2-qzvpp

С	1.890065	-0.077518	0.000051
Ν	3.050972	-0.025928	0.000079
Η	0.454114	1.973720	-0.000050
Pb	-0.404284	-0.016184	-0.000010

HCNPb_triplet_1_HCNPb_triplet_7-B3LYP-def2-qzvpp

Н	1.118882	1.092269	1.313978
С	-2.096154	-0.569116	0.252911
Ν	-2.053641	0.549522	-0.156970
Pb	0.315043	-0.018588	-0.021130

HCNPb_triplet_1_HCNPb_triplet_8-B3LYP-def2-qzvpp

Η	0.956218	-1.638893	-0.000280
С	-0.338453	1.930477	0.000237
Ν	-1.990749	-0.480239	0.000227

32

HCNPb_triplet_2_HCNPb_triplet_7-B3LYP-def2-qzvpp

Н	1.168616	0.527173	1.586469
С	-2.358016	-0.503448	0.171359
Ν	-1.887617	0.552478	-0.090982
Pb	0.319424	-0.016754	-0.024119

HCNPb_triplet_3_HCNPb_triplet_5-B3LYP-def2-

qzvpp*

1 11			
Н	-1.016473	1.681311	0.000029
С	-2.812589	0.245262	-0.000003
Ν	-1.861974	-0.448966	-0.000022
Pb	0.377144	-0.000123	0.000002

HCNPb_triplet_3_HCNPb_triplet_5-B3LYP-def2-qzvpp

Н	2.337958	1.043336	0.000025
Ν	3.147272	-0.060088	0.000007
С	1.946221	-0.097048	0.000003
Pb	-0.439588	-0.000493	-0.000001

HCNPb_triplet_4_HCNPb_triplet_8-B3LYP-def2-qzvpp

Η	-0.522904	1.779575	0.000039
С	-2.118404	-0.424604	0.000013
Ν	2.006293	-0.315927	0.000013
Pb	-0.009887	0.036336	-0.000003

HCNPb_triplet_6_HCNPb_triplet_8-B3LYP-def2-qzvpp

Η	0.877439	-1.657046	-0.000124
Ν	1.939398	0.633642	-0.000018
С	-2.167003	0.558118	-0.000028
Pb	-0.017698	-0.074721	0.000005

HCNPb_triplet_7_HCNPb_triplet_8-B3LYP-def2-qzvpp

Н	0.802504	-0.061646	1.717110
С	-1.161210	1.740769	0.033950
N	-1.833450	-1.008822	0.048174
Pb	0.231694	-0.040503	-0.027537

