Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Fe, N-doped carbon spheres prepared by electrospinning

method as high-efficiency oxygen reduction reaction catalysts

Hanzeng Zou^a, Supeng Pei^{a,*}, Zongshang Zhou^a, Zhaoyan Chen^a, Xia Xiong ^a, Yueyang Sun^a, Yongming Zhang^b

¹School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China, E-mail: peisupeng@126.com

²Shool of Chemical Engineering and Technology, Shanghai Jiaotong University, Shanghai 200240, China

Contents

Table S1 Elemental content of the Fe-N/MCS catalysts

Samples	C(wt. %)	O(wt.%)	N(wt. %)	Fe(wt.%)
Fe-N/MCS-181	83.62	7.66	8.59	0.13
Fe-N/MCS-121	84.90	6.68	8.32	0.10
Fe-N/MCS-158	86.72	5.87	7.30	0.11
Fe-N/MCS-83	85.82	5.47	8.65	0.05

Fig S1. XPS results of N1S and Fe2p of Fe-N/MCS-121(a, b), Fe-N/MCS-158(c, d),

Fe-N/MCS-83(e, f)

Fig S2. LSV results of Fe-N/MCS-181(a), Fe-N/MCS-121(b), Fe-N/MCS-158(c) and Fe-N/MCS-83(d)

Fig S3. K-L plots of Fe-N/MCS-181(a), Fe-N/MCS-121(b), Fe-N/MCS-158(c) and Fe-N/MCS-83(d)

Table S2 Electrocatalytic performances comparison of the Fe-N/MCS catalysts and Pt/C

		-		
Samples	Onset	Half-wave	Current	Electron
	potential	potential(V	density	transfer
	(V vs.	VS.	(mA	number
	Ag/AgCl)	Ag/AgCl)	cm ⁻²)	n
Fe-N/MCS-181	-0.018	-0.145	5.0	4.0
Fe-N/MCS-121	-0.051	-0.212	6.5	4.0
Fe-N/MCS-158	-0.049	-0.180	3.2	3.5
Fe-N/MCS-83	-0.039	-0.164	4.0	3.8
Pt/C	-0.010	-0.180	6.0	4.0

Fig S4. Chronoamperometric responses of Fe-N/MCS-121(a), Fe-N/MCS-158(b) and Fe-N/MCS-83(c) with 3 M methanol

Table S3 Comparison of alkaline ORR performance between Fe-N/MCS-181 and other non-noble metal catalysts from recent literature (electrode 1600 rpm in 0.1 M

Keny							
Samples	Onset potential	et potential Half-wave		-			
	(V vs. Ag/AgCl)	potential(V vs.					
		Ag/AgCl)					
Fe-N/MCS-181	-0.018 (0.959 RHE) ^a	-0.145 (0.832 RHE)	This work				
Ti _{0.8} Co _{0.2} N	0.98 (RHE)	0.85 (RHE)	Ref 1				
	0.082	0.155	Dof 3				
CO-IN-CINF-900	-0.082	-0.155	Rel 2				
S-Eg/N/C	0 911(RHF)	0 799 (RHF)	Ref 3				
5 10/11/0	0.911((((12)	0.755 (MIL)	Net 5				
AA-Fe₃N@NC	-0.073	-0.172	Ref 4				
		••= <i>i</i> =					
Fe/Fe ₂ O ₃ @Fe-	-0.04	-0.17	Ref 5				
N-C-1000							

KOH)

^aFollowing Ag/AgCl potential of Fe-N/MCS-181 is converted to RHE using following Nernst equation. E (vs. RHE) = $E_{Ag/AgCl}$ + pH × 0.059 + 0.210

Notes and References

- X. L. Tian, L. Wang, B. Chi, Y. Xu, S. Zaman, K. Qi, H. Liu, S. Liao, B. Y. Xia, ACS Catal. 2018, 8, 8970–8975.
- 2. L. Shang, H. Yu, X. Huang, T. Bian, R. Shi, Y. Zhao, G. I. Waterhouse, L. Wu, C. Tung, T. Zhang, *Adv. Mater.*, 2016, **28**, 1668-1674.
- 3. K. Hu, L. Tao, D. Liu, J. Huo, S. Wang, ACS Appl. Mater. Interfaces, 2016, 8, 19379-19385.
- 4. A. Zhu, L. Qiao, P. Tan, Y. Ma, W. Zeng, R. Dong, C. Ma, J. Pan, *Appl. Catal. B: Environ.*, 2019, **254**, 601-611.
- 5. Y. Zang, H. Zhang, X. Zhang, R. Liu, S. Liu, G. Wang, Y. Zhang, H. Zhao, *Nano Res.*, 2016, 9, 2123-2137.