Electronic Supplementary Information

Ni nanocatalysts supported on mesoporous Al₂O₃-CeO₂ for CO₂

methanation at low temperature

Yushan Wu,^a Jianghui Lin,^a Guangyuan Ma,^a Yanfei Xu,^a Jianli Zhang,^b Chanatip Samart,^c Mingyue Ding ^{*a,b,d}

^a School of Power and Mechanical Engineering, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Province Key Laboratory of Accoutrement Technique in Fluid Machinery & Power Engineering,

Wuhan University, Wuhan 430072, China

^b State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China

^c Department of Chemistry, Faculty of Science and Technology, Thammasat

University, Rangsit Campus, Klongluang, Pathumtani 12120, Thailand

^d Shenzhen Research Institute of Wuhan University, Shenzhen 518108, China

sample	$S^a_{BET}(m^2 \cdot g^{-1})$	$V^{b}_{p}(cm^{3}\cdot g^{-1})$	$D^{c}_{p}(nm)$
Ni/Al ₂ O ₃	291	0.35	3.30
Ni/Al ₂ O ₃ -CeO ₂ -10	152	0.35	4.35
Ni/Al ₂ O ₃ -CeO ₂ -5	102	0.22	3.77
Ni/Al ₂ O ₃ -CeO ₂ -2.5	105	0.19	3.66
Ni/Al ₂ O ₃ -CeO ₂ -1	95	0.19	3.72

Table S1. Textural properties of Ni/Al2O3-CeO2-x catalysts.

^a Calculated by the BET equation.

^b BJH desorption pore volume.

^c BJH desorption average pore diameter.

Tab	le S2	. T	he ca	lculat	ed pea	k area	ratio	of	0	1 s	(0) _A /	O _T ,	%)	in 1	Ni/.	Al	$_2C$) ₃ -C	Ce(D ₂ -x cata	lysts.
-----	-------	-----	-------	--------	--------	--------	-------	----	---	-----	----	------------------	------------------	----	------	------	----	-------	-------------------	-----	------------------------	--------

Catalyst	Ni/Al ₂ O ₃ -CeO ₂ -x								
Catalyst —	10	5.0	2.5	1.0					
Fresh (O_A/O_T)	73.06	89.67	87.65	85.98					
Spent (O_A/O_T)	91.35	84.08	85.73	85.26					

Fig. S1. PXRD patterns of the spent Ni/Al_2O_3 -CeO₂-x catalysts.