Electronic Supplementary Information

Enhanced Thermal Conductivity of Nanocomposites with MOF-derived Encapsulated

Magnetic Oriented Carbon Nanotube-Grafted Graphene Polyhedra

Xu Li, ^a Ya Li, ^a Md Mofasserul Alam, ^b Peng Chen, ^a Ru Xia, ^a Bin Wu, ^{*a} Jiasheng Qian ^{*a} ^a Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei, 230601, China ^b CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China

*Corresponding Author

E-mail address: lwbin@ahu.edu.cn (B Wu), qianjsh@ahu.edu.cn (J. S. Qian).

Content:

Fig. S1 Schematic illustrations of the preparation process of Co@Co₃O₄-G.

Table. S1 Physical properties of $ER/Co@Co_3O_4$ -G nanocomposites with different $Co@Co_3O_4$ -G volume fractions.

Fig. S2 The XRD of ZIF-67.

Fig. S3 Images of $Co@Co_3O_4$ -G dispersion in a water solution (a) and its response to external magnetic field when a magnet is placed near the dispersion (b).

Fig. S4 Full survey XPS of Co-N/C (a) and Co@Co₃O₄-G(b), N 1s of Co-N/C (c) and Co@Co₃O₄-G (d).

Fig. S5 SEM image of ZIF-67.

Fig. S6 (a) TEM of Co@Co₃O₄-G. (b) TEM-EDS elemental mapping of O atom in Co@Co₃O₄-G. (c) The corresponding EDS spectrum of Co@Co₃O₄-G. (d) The weight and atoms percentage of C, Co, O and N in the Co@Co₃O₄-G.

Fig. S7 The HRTEM of ultra-thin section of $ER/Co@Co_3O_4$ -G with 8.7 vol% loading of $Co@Co_3O_4$ -G.

Fig. S8 The atomic vibrogram of $G \cap CNT$ with time in EMD simulate.

Fig. S9 The change of HCACF of the $G \cap CNT$ and the junction with time.

Fig.S10 The thermal conductivity with 8.7 vol% with the change of magnetic field intensity

Fig. S11 Thermal conductivity of the $ER/Co@Co_3O_4$ -G nanocomposites with different loading and other CNT based composites reported in previous work.

Fig. S12 Thermal conductivity of the ER/Co@Co₃O₄-G nanocomposites with different

loading and other CNT and graphene-based composites reported in previous work.

Fig. S13 The thermal conductive mechanism of $G \cap CNT$.

Fig. S14 Frequency dependence of electric conductivity of the nanocomposites with different loading.

Fig. S1 Schematic illustrations of the preparation process of Co@Co₃O₄-G.

Vol. fraction (Vol%)	Density (g cm ⁻³)	Specific heat capacity	Thermal diffusivity (mm ² s ⁻¹)	Thermal conductivity (W m ⁻¹ K ⁻¹)
		$(J g^{-1} K^{-1})$		
0	1.05	1.38	0.13	0.19
	1.02	1.34	0.12	0.17
	1.08	1.36	0.15	0.22
1.2	1.23	1.31	0.19	0.32
	1.19	1.33	0.22	0.35
	1.22	1.28	0.17	0.27
2.6	1.24	1.32	0.34	0.56
	1.26	1.31	0.36	0.60
	1.27	1.30	0.29	0.48
4.3	1.28	1.29	0.80	1.32
	1.29	1.28	0.83	1.37
	1.27	1.26	0.79	1.27
6.5	1.32	1.22	1.04	1.67
	1.35	1.23	1.03	1.72
	1.37	1.25	0.91	1.56
8.7	1.38	1.21	1.26	2.11
	1.37	1.18	1.39	2.24
	1.37	1.16	1.30	2.07

Table. S1 Physical properties of $ER/Co@Co_3O_4$ -G nanocomposites with different $Co@Co_3O_4$ -G volume fractions.

Fig. S2 The XRD of ZIF-67.

Fig. S3 Images of $Co@Co_3O_4$ -G dispersion in a water solution (a) and its response to external magnetic field when a magnet is placed near the dispersion (b).

Fig. S4 Full survey XPS of Co-N/C (a) and Co@Co₃O₄-G(b), N 1s of Co-N/C (c) and Co@Co₃O₄-G(d).

Fig. S5 SEM image of ZIF-67.

Fig. S6 (a) TEM of $Co@Co_3O_4$ -G. (b) TEM-EDS elemental mapping of O atom in $Co@Co_3O_4$ -G. (c) The corresponding EDS spectrum of $Co@Co_3O_4$ -G. (d) The weight and atoms percentage of C, Co, O and N in the $Co@Co_3O_4$ -G.

Fig. S7 The HRTEM of ultra-thin section of ER/Co@Co₃O₄-G with 8.7 vol% loading of Co@Co₃O₄-G.

Fig. S8 the atomic vibrogram of $G \cap CNT$ with time in EMD simulate.

Fig. S9 The change of HCACF of the $G \cap CNT$ and the junction with time.

Fig. S10 The thermal conductivity of nanocomposites with 8.7 vol% loading with the

change of magnetic field intensity

Fig. S11 the thermal conductivity of $ER/Co@Co_3O_4$ -G with different loading along different heat flow.

Fig. S12 Thermal conductivity of the ER/Co@Co₃O₄-G nanocomposites with different

loading and other CNT and graphene-based composites reported in previous work.

Fig. S13 The thermal conductive mechanism of $Co@Co_3O_4$ -G.

Fig. S14 Frequency dependence of electric conductivity of the nanocomposites with different loading.

Reference

1. R. Haggenmueller, C. Guthy, J. R. Lukes, J. E. Fischer and K. I. Winey, *macromolecules*, 2007, **40**, 2417-2424.

2. H. S. Kim, J. U. Jang, J. Yu and S. Y. Kim, *Compos. Part B-Eng.*, 2015, **79**, 505-512.

3. W. T. Hong and N. H. Tai, *Diam. Relat. Mater.*, 2008, **17**, 1577-1581.

4. F. Du, C. Guthy, T. Kashiwagi, J. E. Fischer and K. I. Winey, *J. Polym. Sci. Pol. Phys.*, 2006, **44**, 1513-1519.

5. W. B. Zhang, Z. X. Zhang, J. H. Yang, T. Huang, N. Zhang, X. T. Zheng, Y. Wang and Z. W. Zhou, *Carbon*, 2015, **90**, 242-254.

6. P. Bonnet, D. Sireude, B. Garnier and O. Chauvet, *Appl. Phys. Lett.*, 2007, **91**, 201910.

7. F. H. Gojny, M. H. G. Wichmann, B. Fiedler, I. A. Kinloch, W. Bauhofer, A. H. Windle and K. Schulte, *Polymer*, 2006, **47**, 2036-2045.

8. C. Guthy, F. Du, S. Brand, K. I. Winey and J. E. Fischer, *J. Heat Transfer*, 2007, **129**, 1096-1099.

9. Y. Xu, G. Ray and B. Abdel-Magid, *Compos. Part A-Appl. S.*, 2006, **37**, 114-121.

10. A. M. Marconnet, N. Yamamoto, M. A. Panzer, B. L. Wardle and K. E. Goodson, *ACS Nano*, 2011, **5**, 4818-4825.

11. Z. Barani, A. Mohammadzadeh, A. Geremew, C. Y. Huang, D. Coleman, L. Mangolini, F. Kargar and A. A. Balandin, *Adv. Funct. Mater.*, 2019, 1904008.

12. F. Kargar, Z. Barani, R. Salgado, B. Debnath, J. S. Lewis, E. Aytan, R. K. Lake and A. A. Balandin, *ACS Appl. Mater. Inter.*, 2018, **10**, 37555-37565.

13. F. Kargar, Z. Barani, M. Balinskiy, A. S. Magana, J. S. Lewis and A. A. Balandin, *Adv. Electron. Mater.*, 2019, **5**, 1800558.

14. J. S. Lewis, Z. Barani, A. S. Magana, F. Kargar and A. A. Balandin, *Mater. Res. Express*, 2019, **6**, 085325.