2

Supporting Materials

3	In situ synthesis of ZnO–GO/CGH composites for visible light photocatalytic
4	degradation of Methylene Blue
5	
6	
7	Xiaoxuan Di ¹ , Feng Guo ^{1*} , Zihan Zhu ¹ , Zhonghao Xu ¹ , Ziqi Qian ¹ , Qian Zhang ¹
8	
9	
10	¹ Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of
11	Education), School of Ocean Science and Technology, Dalian University of
12	Technology, Panjin 124221, China
13	
14	(Email: 0411guofeng@dlut.edu.cn)
15	
16	

18 Scheme1. The synthesis route of ZnO-GO/CGH.

Figure S1. Photocurrent versus time (I-t) curves of the solar cell device based on ZnO and ZnO-GO composite in 0.5 M Na₂SO₄ aqueous solution under visible light irradiation with applied potential of -0.1 V vs Ag/AgCl.

Figure S2. N_2 adsorption desorption curve and physical and chemical parameters of different adsorbent samples.

- 32 composites.

36 Figure S4. Effect of Vitamin C on photocatalytic performance of ZnO-GO/CGH

- 37 composites.

43 Figure S5. Maximum endurance of chitin graphene hydrogel doped with different 44 ZnO–GO content.

49 Figure S6. Cycling experiment for degradation of MB with 1% ZnO-GO/CGH (C₀, 30

- 50 mg L^{-1} ; catalyst dosage, 1.0 g/L).
- 51
- 52

54 Figure S7. Change of MB photocatalytic degradation degree observed for 1%
55 ZnO–GO /CGH under visible-light irradiation in the presence of various trapping
56 agent

59 Figure S8. Schematic drawing illustrates the synergy of MB adsorption enrichment

- 60 and photocatalytic degradation by ZnO–GO/CGH composite.

S _{BET}	Pore Volume	Pore Size	
(m^{2}/g)	(cm^3/g)	(nm)	
28.08	5.716	1.052	
32.41	6.039	1.504	
9.952	2.628	1.034	
18.76	5.065	1.283	
	S _{BET} (m ² /g) 28.08 32.41 9.952 18.76	S_{BET} Pore Volume (m^2/g) (cm^3/g) 28.085.71632.416.0399.9522.62818.765.065	

66 Table S1. Physical and chemical parameters of different adsorbent samples

71 Table S2. Kinetic parameters and correlation coefficients for the adsorption of MB on

72 CGH.

	Pseudo-first order model			Pseud	Pseudo-second order model			
	$K_1(min^{-1})$	q _e (mg/g)	R ²	K_2	(g·mg⁻	q _e (mg/g)	R ²	
_			1	·min ⁻¹)				
	0.07588	22.40904	0.99	0.010	15	22.9042	0.999	
		2			6			