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1 Grey Relational Analysis (GRA)
The grey relational analysis method is part of the gray system
theory, which was first proposed by Professor Deng Julong of
Huazhong University of Science and Technology in 19821. The
grey system theory studies the modeling of poor information sys-
tems with little data. Grey relational analysis method is used to
describe the consistency problem of the change trend of two fac-
tors, namely the relevance between each sub-sequence and the
parent sequence, and to compare the correlation. It has been
proved to be effective in solving problems with complicated inter-
relationships between multiple factors and variables2. Classical
GRA is based on time series data and/or cross-sectional data.

The analysis steps of the grey relational analysis method are
as follows3: First, the grey relation is generated, that is, all se-
quences reflecting the behavioral characteristics of the system are
converted into comparison sequences; then a reference sequence
is defined in these sequences, and calculate the grey relational
coefficient between all the comparison sequences and the refer-
ence sequence; Finally, based on these correlation coefficients,
calculate the grey correlation grade between each comparison
sequence and the reference sequence, the comparison sequence
with the highest correlation grade is the best choice.

(1)Generate grey correlation
When the dimensions of the attributes are not uniform or the

magnitude differs too much, the influence of some attributes may
be ignored. Therefore, it is necessary to use a method similar
to normalization to convert each attribute into a comparable se-
quence. This process is called grey correlation generation. This
paper adopts the averaging method to deal with the problem of
data dimension, so as to normalize the data.
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(2)Define the reference sequence

After grey correlation generation, the normalization of data di-
mension is completed. Next, determine the reference sequence
that reflects the characteristics of the system’s behavior and the
comparison sequence that affects the system’s behavior. Set ref-
erence sequence is (X0(k),k = 1,2, · · ·,n), compare sequence is
(Xi = Xi(k)|k = 1,2, · · ·,n, i = 1,2, · · ·,m).

(3)Calculate the grey correlation coefficient

The grey correlation coefficient reflects the correlation between
the elements in the comparison sequence and the Xi(k) elements
in the reference sequence X0(k). The calculation formula is as
follows:

ξi(k) =
min

i
min

k
|X0(k)−Xi(k)|+ρmax

i
max

k
|X0(k)−Xi(k)|

|X0(k)−Xi(k)|+ρmax
i

max
k
|X0(k)−Xi(k)|

(1)

where ρ is the resolution coefficient, its size can control the in-
fluence of the maximum difference on data conversion, which is
generally 0.5.

(4)Calculate grey correlation grade

Finally, the average value of the correlation coefficient of each
element is used as the grey correlation grade between the com-
parison sequence and the reference sequence. The formula is as
follows:

ri =
1
n

n

∑
k=1

ξi(k) (2)

ri is the grey correlation grade, the closer the value is to 1, the
higher the degree of correlation.

2 Particle Swam Optimization (PSO)
Particle Swam Optimization (PSO) was first proposed by Kennedy
and Eberhart in 19954. Inspired by the bird’s predatory behavior,
PSO realized the process of finding the best solution in a complex
space through cooperation and competition among individuals5.
The algorithm involves fewer concepts and is easier to implement.
A large number of studies have shown that the particle swarm op-
timization algorithm can solve nonlinear optimization problems
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and combinatorial optimization problems well6–8.

The core idea of the PSO algorithm is to simulate the predation
behavior of birds. The individuals in the population are parti-
cles without volume and mass. The state of each particle rep-
resents a certain possible solution, and the optimal position of
the population is the global optimal solution. With m particles,
its population can be expressed as Y = Y1,Y2, · · ·,Yi, · · ·,Ym, and its
D-dimensional attribute can be expressed as Yi = yi1,yi2, · · ·,yiD .
The optimal position of the individual itself is called the individ-
ual optimal value Pi , and the optimal position of the population
is called the global optimal value Pg . The state of the individ-
ual is determined by the speed Vi = vi1,vi2, · · ·,viD and the optimal
position Pi = pi1, pi2, · · ·, piD , then the state of the particle can be
updated by Eq.3 and Eq.4. The fitness value of Yi is determined
by calculating the fitness function (yik) of each particle, and the
individual extreme values Pk

i and global extreme values Pk
g are up-

dated by comparison with the previous one, thereby generating a
new generation of population. When the termination condition is
satisfied (usually the maximum number of iterations or the pre-
cision that needs to be reached), the iteration stops and a global
optimal solution is produced.

V (k+1)
i,d = ωV k

i,d + c1r1(Pind
i,d −Pk

i,d)+ c2r2(P
glob
d −Pk

i,d) (3)

P(k+1)
i,d = Pk

i,d +V (k+1)
i,d (4)

where k denotes the iteration number, d represents the search di-
rection, ω is called inertial weight, r1 and r2 are random numbers
with uniform distribution in the range of 0 to 1, and c1 and c2 are
the cognition and social parameters respectively.

3 Support Vector Machine (SVM)
Support Vector Machine (SVM) was officially proposed by Cortes
and Vapnik in 19959 . Its basic model is a linear classifier with the
largest interval defined in the feature space, that is, it hopes to ob-
tain a hyperplane through training to correctly separate positive
and negative samples, and to ensure that the interval between the
sample and the classification hyperplane obtained by training is
the largest. Since support vector machines have multiple kernel
functions, they can convert features in low dimensions into fea-
tures with high dimensions for calculation, which is essentially
equivalent to implicitly learning linear support vector machines
in high-dimensional feature spaces, so therefore, it is essentially
a nonlinear classifier. This model compromises the model load
and accurate classification ability in exchange for stronger gener-
alization ability, and can better solve the problems of small sam-
ples, nonlinearity, high dimensionality, and local minimum10,11.
According to different problems, it can be divided into support
vector machine for classifier (SVC) and support vector machine
for regression (SVR).

3.1 Support vector machine for classifier (SVC)

(1)Linear classification problem

Consider the second-class classification problem. Suppose that
given a training set sample T = (x1,y1),(x2,y2), · · · ,(xl ,yl),xi ∈ Rn,
where each sample xi has n-dimensional feature vectors, also

known as instances, yi ∈ +1,−1, yi represents the label value of
each sample, because it is a binary classification problem, there
are only two values: When y = +1, it is called a positive case;
when y =−1, it is a negative case. The goal of learning is to find
a separate hyperplane in the feature space, which can divide the
examples into different classes and maximize the interval of the
hyperplanes.

Let the classification hyperplane be:

ω · x+b = 0 (5)

The decision function is:

f (x) = sign(ω · x+b) (6)

Where ω represents the normal vector of the hyperplane and b
represents the intercept.

It can be seen from Eq.5 that that when ω and b change in the
same proportion, the hyperplane represented does not change. It
is possible to set the distance of the positive and negative samples
from the hyperplane to at least 1 unit length, so we can get:

ω · x+b≥ 1

ω · x+b≤−1, i = 1,2,3, · · · , l
(7)

When y = 1, the sample is a positive sample, on the side of the hy-
perplane, and when y =−1, it is expressed as a negative sample,
on the other side of the classification hyperplane. By maximiz-
ing the interval to train the SVM model, the optimal separation
hyperplane can be finally obtained.

The final optimization goal is to maximize the value of 2
‖ω‖ ,

considering the model generalization ability and model misclas-
sification, and at the same time to minimize the empirical risk,
so on the basis of 2

‖ω‖ , a penalty term composed of relaxation
variable ξi and penalty factor C is added. When the value of C is
relatively large, the penalty for model misclassification increases.
The relaxation variable ξi is also added to Eq.7, and the final
equivalent constraint is yi(ω ·xi +b)≥ 1−ξi . Therefore, the solu-
tion of the SVM model can be converted into a convex quadratic
programming problem with linear constraints. The optimization
goal in Eq.8 requires not only the maximization of the interval
but also the model misclassification as small as possible.

min
ω,b,ξ

1
2
‖ω‖2 +C

l

∑
i=1

ξi

s.t. yi(ω · xi +b)≥ 1−ξi, i = 1,2,3, · · · , l

ξi ≥ 0, i = 1,2,3, · · ·, l

(8)

Since the dual problem is easier to solve and the kernel function
can be directly introduced, the optimization problem is solved
by the method of solving the dual problem. Introducing the La-
grangian multiplier αi ≥ 0,βi ≥ 0, the Lagrange function is ob-
tained:
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L(ω,b,ξ ,α,β )=
1
2
‖ω‖2+C

l

∑
i=1

ξi−
l

∑
i=1

αi[yi(ω ·xi+b)−1+ξi]−
l

∑
i=1

βiξi

(9)
According to Eq.9, find the partial derivative of ω,b,ξ to get the

minimum value of L:

∂L
∂ω

= ω−
l

∑
i=1

αiyixi = 0 (10)

∂L
∂b

=−
l

∑
i=1

αiyi = 0 (11)

∂L
∂ξi

=C−αi−βi = 0 (12)

Substituting the results of Eq.11 and Eq.12 into Eq.9 and sim-
plifying:

L =
1
2
(

l

∑
i=1

αiyixi)
2 +C

l

∑
i=1

ξi− (
l

∑
i=1

αiyixi)
2 +

l

∑
i=1

αi−
l

∑
i=1

(al phai +βi)ξi

=−1
2

l

∑
i=1

l

∑
j=1

αiyixiαiyixi +
l

∑
i=1

αi

(13)

The resulting dual optimization problem is shown in Eq.14:

min
α,β

1
2

l

∑
i=1

l

∑
j=1

αiyixiαiyixi−
l

∑
i=1

αi

s.t. 0≤ αi ≤C

l

∑
i=1

αiyi = 0

(14)

Let α∗ =]α1,α2,α3, · · · ,αl ] be the optimal solution of the above
convex optimization problem, then Eq.15 can be obtained ac-
cording to the KKT condition, and it can be obtained accord-
ing to the constraints of the dual problem: when 0 ≤ αi ≤ C,
yi(ω

∗ ·xi+b)−1+ξ ∗i = 0, the corresponding sample point is called
support vector.

yi(ω
∗ · xi +b)−1+ξ

∗
i = 0

β
∗
i ξ
∗
i = 0

(15)

According to the above analysis, the value of ω, b and the clas-
sification decision function can be finally obtained:

ω =
l

∑
i=1

αiyixi

b = y j−
l

∑
i=1

αiyi(xi · x j) 0≤ αi ≤C

(16)

f (x) = sign(
l

∑
i=1

αiyi(xi · x j)+b) (17)

(2)Nonlinear classification problem

When the samples are linearly inseparable, the support vector
classifier solves this problem by converting the sample values into
a linear feature space of high or even infinite dimensions through
a nonlinear function φ(·) , then classify the samples in a high-
dimensional space12. The decision function at this time is shown
in Eq.18 , where K(xi,x j) = φ(xi) ·φ(x j) is called the kernel func-
tion. There are currently four types of kernel functions commonly
used:

f (x) = sign(
l

∑
i=1

αiyi(φ(xi) ·φ(x j))+b)

= sign(
l

∑
i=1

αiyiK(xi,x j))+b)

(18)

(a) Linear kernel function: K(xi,x j) = xi · x j

(b) Polynomial kernel function: K(xi,x j) = [(xi · x j) + 1]d ,d =

1,2,3, · · · ,n
(c) Radial basis kernel function: K(xi,x j) = exp(− |xi−x|2

2σ 2 ) =

exp(−γ|xi− x j|2)

3.2 Support vector machine for regression (SVR)

(1) Linear regression problem

Support vector machine were originally suitable for classifica-
tion problems, but as research found that they were also suitable
for regression problems, support vector regression machines came
into being. SVR is a regression method based on penalty learn-
ing13. The difference between SVM and SVR is that the output
value of the classification problem is yi ∈ +1,−1 , while the out-
put value of the regression problem is any continuous value. The
overall goal of SVR is to get the regression relationship between
the input x and the result y. f (x) can be described as an approxi-
mate linear regression problem.

y = f (x) =
l

∑
i=1

ωixi +b (19)

Among them, the regression coefficients ω and b are obtained by
the optimization method.

The essence of the SVR optimization problem is the problem
of minimizing the width 1

2‖ω‖
2 of the plane. In the presence of

errors, the slack variables ξ− and ξ+ are introduced to denote
the cases of not exceeding and exceeding the penalty interval ε

respectively, and add to the parameter C constitute the final risk
function R. The goal of the SVR problem is to convert the problem
of minimizing the risk function

Min ·R(ω,ξ+,ξ−) =
1
2
‖ω‖2 +C

n

∑
i=1

(ξ++ξ
−)

s.t. f (xi)− yi ≤ ε +ξ
−, i = 1, · · ·,n

yi− f (xi)≥ ε +ξ
+, i = 1, · · ·,n

ξ
+,ξ− ≥ 0, i = 1, · · ·,n

(20)

By introducing Lagrange multiplier α
−
i and α

+
i , the above for-
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mula is transformed into the following form:

Max ·Lq =
l

∑
i=1

(α+
i −α

−
i )yi− ε

l

∑
i=1

(α+
i +α

−
i )− 1

2

l

∑
i, j=1

(α+
i −α

−
i )(α+

j −α
−
i )xiy j

s.t. 0≤ α
+
i ≤C, i = 1, · · ·, l

0≤ α
−
i ≤C, i = 1, · · ·, l

(21)

Therefore, the initial regression goal can be expressed as:

y = f (x,α+,α−) =
l

∑
i=1

(α+
i −α

−
i )xi · x+b (22)

(2) Nonlinear regression problem
In the regression problem, solving the nonlinear problem is

similar to solving the nonlinear classification problem. The ker-
nel function is used to map the low-dimensional data samples
to the high-dimensional space, so that the nonlinear problem is
converted into a linear problem in the high-dimensional space,
thereby achieving the nonlinear problem regression prediction.
The choice of kernel function determines the accuracy and uni-
versality of the SVR regression model.

4 Random Forest (RF)
Random forest is an integrated learning method. The integrated
learning method is a method that integrates the individual learner
into a strong learner through a certain strategy to complete the
learning task. Random forest is a combination algorithm of Bag-
ging integration method based on decision tree. The following
will introduce the integrated learning method, decision tree , Bag-
ging and random forest.

4.1 Integrated learning
Integrated learning accomplishes the learning task by construct-
ing multiple learners. The structure of integrated learning is gen-
erally: first determine a group of individual learners, and then
combine them into a combined module through a certain strat-
egy, and finally the combined module completes the learning task
and outputs it. Individual learners are generally existing learn-
ing algorithms. If the individual learners are all the same, such as
"neural network integration" is all integrated by a neural network,
it is called homogeneous integration, and the individual learner
in homogeneous integration is called "basic learning". If the in-
dividual learner is composed of different algorithms, such as the
individual learner contains both a decision tree and a neural net-
work, it is called heterogeneous integration, and the individual
learner in heterogeneous integration is generally called "organiza-
tion learner" . Integrated learning achieves better generalization
performance than a single learner by integrating multiple individ-
ual learners, especially compared to the "weak learner", therefore,
the basic learner is often called weak learner, and the combined
learner is also often called strong learner.

According to the different combination strategies of individ-
ual learners, integrated learning is divided into two integration
methods. The first one is Boosting. In this method, the individual
learners are related to each other and must be integrated in series,

that is, the latter learner must be based on the previous learning
results; the second one is Bagging, there is no correlation between
each learner in this method, they can learn in parallel at the same
time. Random forest is a learning method based on Bagging.

4.2 Decision tree
Decision tree is a basic classification regression model. This idea
mainly comes from the ID3 algorithm in 1986 and the C4.5 al-
gorithm proposed in 1993 proposed by Quinlan, and the CART
algorithm proposed by Breinman et al. in 198414–16. The de-
cision tree consists of nodes and directed edges. Internal nodes
represent a certain feature, and leaf nodes represent a certain
category. When using the decision tree for classification, starting
from the top root node, the attributes of the sample are discrimi-
nated one by one, and classified into an internal node represent-
ing the corresponding attribute or value until it reaches the leaf
node. Complete the division of the sample.

The basic learner in the random forest is the CART algorithm.
Classification and regression tree (CART) model is a commonly
used decision tree method, which can be applied to both classi-
fication and regression problems. The CART algorithm is mainly
composed of the following two steps:

(1) Decision tree generation
Use training samples to generate a decision tree. In general,

the larger the tree, the better.
The generation of the decision tree is the process of continu-

ously generating the binary tree from top to bottom. For how to
generate a binary tree, that is, how to select feature, for the clas-
sification decision tree, the Gini index minimization criterion is
used.

In the classification problem, assuming a total of K classes, the
probability that an object can be classified into the kth class is Pk,
then the Gini index is:

Gini(p) =
K

∑
k

pk(1− pk) =
K

∑
k

p2
k (23)

For binary classification problems:

Gini(p) = 2p(1− p) (24)

Suppose the sample set is D. On the division of a certain feature
A, the sample can be divided into two parts: D1 and D2, then the
Gini index of the sample is:

Gini(D,A) =
|D1|
|D|

Gini(D1)+
|D2|
|D|

Gini(D2) (25)

When dividing the attributes, choose the category with the
smaller Gini index to divide. Because the Gini index represents
an uncertainty, the smaller the Gini index, the smaller the uncer-
tainty, the more accurate the classification of categories.

(2) Decision tree pruning
Pruning the generated tree according to the verification data

set and selecting the optimal subtree to avoid overfitting.
Decision tree pruning is essentially a simplified process of the

generated tree in order to improve the ability to predict unknown
data and avoid the occurrence of overfitting. The pruning of the

4 | 1–6Journal Name, [year], [vol.],



decision tree is divided into two steps. The first step is to start
pruning from the bottom of the generated CART tree until the
root node, in this process a series of subtree sequences are gener-
ated; the second step is to test the subtree sequence to select the
optimal subtree, the method is to perform cross-validation on an
independent verification data set.

4.3 Bagging and Random Forest

According to the above introduction, random forest is a strong
learner built by Bagging integration method based on decision
tree. Random forest can be used to solve classification problems,
regression problems or other problems.

Bagging is a typical representative of parallel integration meth-
ods. It resamples by bootstrap method. Given a data set contain-
ing m samples, randomly select one from the sample data set and
put it into the sampler, and then put the sample data back into
the original data set. At the time of extraction, the data may be
selected. After m times of extraction with replacement, a sample
set containing m samples is obtained. The result of this kind of
sampling is that some data are drawn multiple times and some
data are not drawn once. Research show that the probability of
each sample being drawn by this resampling technique is 63.2%.

According to the above method, extract T sample sets contain-
ing m samples. For each sample set, train a base learner, and then
combine these base learners for output. This is the basic flow of
the Bagging integration method. For classification problems, the
combination of basic learners is the simple voting method. For re-
gression problems, the combination of basic learners is the simple
average method.

Random forest is an algorithm based on Bagging integration.
Integrate the base learner with the Bagging method, and the base
learner used in random forest is adecision tree. But in addition
to this, the choice of random attributes is added to the base deci-
sion tree in the random forest when selecting attribute divisions.
Generally, when choosing attribute division, the decision tree se-
lects an optimal attribute among all attributes of the current node
(assuming d attributes), and the base decision tree in the random
forest randomly selects k attributes from the current node’s at-
tribute set for division when selecting attribute divisions. The
parameter k determines the degree of introduction of the random
attributes. When k= d, the base decision tree in the random forest
is the same as the ordinary decision tree, When k = 1, an attribute
is randomly selected for division. In general,k = logd

2 .

The random forest algorithm is relatively simple, has low com-
putational overhead, and is easy to implement. A lot of research
and practice show that the random forest algorithm can solve the
prediction problem well, can avoid overfitting, and has a strong
generalization ability. Even for some small sample data sets with
missing data, it also has good prediction ability17,18.

5 Markov Chain Principle
Russian mathematician Markov (Markov) based on Chebyshev’s
research on the limit law in probability theory, studied indepen-
dent random variables and classical extreme value theory, im-
proved the law of large numbers and the central extreme value

theory. In the process of Markov’s research on random variable
sequences, a Markov stochastic process, or "Markov process", was
proposed. On this basis, Markov chain theory came into being.

(1) Markov process
Markov process refers to: when the state of a system or process

at the current time t0 is known, the state at the next time t1 (t1 >
t0) is only related to the current time t0, and it has nothing to do
with other time before time t0. That is to say, the system or process
state value at the next moment in the future is only related to the
current moment, but not to the historical moment. This process
is called Markov process, and it refers to the random process of
time transition and state transition.

(2) Markov chain principle
Markov chain is a special case of Markov process, that is, time

and state variables are discrete and their states are finite and
countable.The core idea of Markov method is to decide the state
transferring probability matrix.19,20 The transition probability of
state Ei to state E j after k times is determined as follows.

P(k)
i j =

m(k)
i j

Mi
(26)

where Mi indicates the total number of states, m(k)
i j is the number

of times the state Ei transferred to the state E j. Then the n× n
transfer matrix P(k) is expressed as follows.

p(k) =


p(k)11 p(k)12 p(k)13 · · · p(k)1n

p(k)21 p(k)22 p(k)23 · · · p(k)2n
· · · · · · · · · · · · · · ·
p(k)m1 p(k)m2 p(k)m3 · · · p(k)mn

 (27)

The state transition probability matrix is used to correct the
original data by Markov chain prediction model.

Xk = X0Pk (28)

where Xk is the probability transition matrix in time k, and X0 is
the probability vector of the initial state. The prediction results
are corrected according to the following formula.

F =
Fg

1−q
(29)

where Fg is the prediction value, and q is the boundary value of
the original state interval.
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