Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Three dimensional NiCoP hollow spheres; efficient electrode material for Hydrogen evolution reaction and Supercapacitor application

Jiban K. Das^{a,b}, Aneeya K. Samantara^{a,b}, Saumya Satyarthy^{a,b}, Chandra Sekhar Rout^{c,*}

J. N. Behera^{a,b,*}

Fig. S 1 Selected area electron diffraction (SAED) pattern for the NiCoP microspheres

Fig. S 2 EDS mapping of NiCoP microspheres

Fig. S 3 Linear sweep voltammograms of commercial Pt/C and NiCoP microsphere before and after iR correction

Fig. S 4 Linear sweep voltammograms of NiCoP modified glassy carbon electrode for HER at a sweep rate of 5 mV/s. Here Graphite rod has been used as the counter electrode.

Fig. S 5 long term stability test for HER at 10 mA/cm² current density in 0.5 M H_2SO_4 with Ag/AgCl reference and graphite rod as counter electrode.

Fig. S 6 SAED pattern of NiCoP modifies electrode after 10000 repeated cycles in 5M KOH electrolyte.

Sl No.	Sample	Electrolyte H ₂ SO ₄ (M)	Over potential 10mA/cm ² (mV)	Tafel slope (mV/dec)	Reference
1	Co-NRCNTs	0.5	260	69	1
2	Ni–Co–P Ni–Co–P/C ₆₀	0.5	97	58 48	2
3	RGO/WS ₂	0.5	229	73	3
4	Freeze-dried WS ₂ /rGO after annealing	0.5	265	58	4
5	NiCoP@FePx	1M KOH 0.5	82.5 96	69.1 50.16	5
6	Metallic MoS ₂ nanosheets	0.5	195	54	6
7	NiCoP/NF	1M KOH	85	46	7
8	Annealed WS ₂ /CC	0.5	225	105	8
9	Ni-Co-P-300	1M KOH	150	60.6	9
10	Ni ₁₂ P ₅ Spherical Nano Particles Ni ₁₂ P ₅ nanoplates	0.5	175 128	69.9 60.6	10
11	FeP nanosheets	0.5	240	67	11
12	NiCoP	0.5	160	70	This Work

 Table S 1 The HER performance of different electrocatalysts

Sl no	Sample	Potential window	Specific capacitance (F/g)	Reference
1	Co ₂ P nanoflowers	0-0.5V	416	12
2	Ni ₂ P nanorods	0- 0.475 V	799.2	13
3	Ni ₂ P particles	0-0.4V	823.25	14
4	Ni ₁₂ P ₅ hollow nanocapsules	0-0.55V	949	15
6	NiCoP nanoparticles	0.1-0.58V	646	16
7	Ni-P microspheres@MnO ₂	0–0.35 V	1130	17
10	Ni ₅ P ₄ particles	0-0.4V	801.5	14
11	NiCoP hollow sphere	0-0.5V	960	This work

Table S 2. The Supercapacitor performance of different Transition metal based phosphides

References

- 1 X. Zou, X. Huang, A. Goswami, R. Silva, B. R. Sathe, E. Mikmeková and T. Asefa, *Angew. Chemie Int. Ed.*, 2014, **53**, 4372–4376.
- 2 Z. Du, N. Jannatun, D. Yu, J. Ren, W. Huang and X. Lu, *Nanoscale*, 2018, 10, 23070–23079.
- 3 T. A. Shifa, F. Wang, Z. Cheng, X. Zhan, Z. Wang, K. Liu, M. Safdar, L. Sun and J. He, *Nanoscale*, 2015, 7, 14760–14765.
- 4 J. Yang, D. Voiry, S. J. Ahn, D. Kang, A. Y. Kim, M. Chhowalla and H. S. Shin, *Angew. Chemie Int. Ed.*, 2013, **52**, 13751–13754.
- 5 M. Li, X. Liu and X. Hu, ACS Sustain. Chem. Eng., 2018, 6, 8847–8855.
- 6 M. A. Lukowski, A. S. Daniel, F. Meng, A. Forticaux, L. Li and S. Jin, J. Am. Chem. Soc., 2013, 135, 10274–10277.
- 7 C. Yu, F. Xu, L. Luo, H. S. Abbo, S. J. J. Titinchi, P. K. Shen, P. Tsiakaras and S. Yin,

Electrochim. Acta, 2019, **317**, 191–198.

- 8 Y. Yan, B. Xia, N. Li, Z. Xu, A. Fisher and X. Wang, J. Mater. Chem. A, 2015, 3, 131–135.
- 9 Y. Feng, X.-Y. Yu and U. Paik, *Chem. Commun.*, 2016, **52**, 1633–1636.
- 10 Z. Chen, A. Shan, Y. Cui, R. Wang and C. Chen, CrystEngComm, 2019, 21, 228–235.
- 11 Y. Xu, R. Wu, J. Zhang, Y. Shi and B. Zhang, Chem. Commun., 2013, 49, 6656–6658.
- 12 N. Choudhary, C. Li, J. Moore, N. Nagaiah, L. Zhai, Y. Jung and J. Thomas, *Adv. Mater.*, 2017, **29**, 1605336.
- Y. Lu, J.-P. Tu, Q.-Q. Xiong, J.-Y. Xiang, Y.-J. Mai, J. Zhang, Y.-Q. Qiao, X.-L. Wang, C. D. Gu and S. X. Mao, *Adv. Funct. Mater.*, 2012, 22, 3927–3935.
- 14 J. Yan, Q. Wang, T. Wei and Z. Fan, Adv. Energy Mater., 2014, 4, 1300816.
- 15 X. Li, A. M. Elshahawy, C. Guan and J. Wang, Small, 2017, 13, 1701530.
- 16 D. Yu, K. Goh, Q. Zhang, L. Wei, H. Wang, W. Jiang and Y. Chen, *Adv. Mater.*, 2014, 26, 6790–6797.
- 17 D. Yang, Z. Lu, X. Rui, X. Huang, H. Li, J. Zhu, W. Zhang, Y. M. Lam, H. H. Hng, H. Zhang and Q. Yan, *Angew. Chemie Int. Ed.*, 2014, **53**, 9352–9355.