Supporting Information

Removal of manganous dithionate (MnS₂O₆) with natural MnO₂ from the desulfurization manganese slurry

Lin Yang^{†, ‡*}, Cheng Wang[†], Lu Yao^{†, ‡}, Xia Jiang^{†, ‡}, Wenju Jiang^{†, ‡*}, Jianjun Li^{†, ‡}

† College of Architecture and Environment, Sichuan University, Chengdu 610065, P.R. China

‡ National Engineering Research Center for Flue Gas Desulfurization, Chengdu 610065, P.R.

China

*Corresponding author: L. Yang (andyyiyin@sina.com) and W. J. Jiang (wenjujiang@scu.edu.cn).

MnO₂

MnO₂

Figure S3 The XRD pattern of the natural MnO_2 ore used in this study

Initial MD	Final MD	Removal	Decomposed MD per
(g/L)	concentration	efficiency	unit MnO ₂
	(g/L)	(%)	(mg/L·g MnO₂)
4.00	0.14	96.40	39
6.00	0.56	90.73	54
8.00	1.13	85.81	69
10.00	1.76	82.38	82
12.00	2.28	80.96	97

Table S1 The calculation of MD decomposition with different initial

concentration