Supplementary Information

Facile one-step synthesis of quaternary AgInZnS quantum dots and their applications for bioeffect and detecting Cu²⁺

Xiao-Le Han^{a, #,*}, Qingyu Li^{a, #}, Hao Hao^a, Chenyin Liu^a, Run Li^a, Fan Yu^a, Jiawen Lei^a, Qingqing Jiang^a, Yi Liu^b, JunCheng Hu^{a,*}

^aKey Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China

^b State Key Laboratory of Virology & Key laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.

^{*}corresponding authors: Xiao-le Han and Juncheng Hu

^a Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China E-mail address: HXL1220@hotmail.com (Xiao-le Han)

jchu@mail.scuec.edu.cn (Juncheng Hu

	С	k		P _m	$Q_{ m total}$	Ι	<i>IC</i> ₅₀	
QDs	[nmol·L-	[10 ⁻³ min ⁻	R	[mW]	[J]	[%]	[nmol·L ⁻	
	1	1	0.000	2.02	0.70	0	1	
O-CdTe	0	6.80	0.998	2.22	0.79	0		
	4.9	6.10 5.40	0.999	2.19	0.78	10.29		
	/.9	5.40	0.997	1.69	0.84	20.58		
	11.9	4.65	0.997	1.27	0.84	31.62	17.07	
	14.9	3.70	0.993	1.14	0.83	44.70		
	29.7	2.71	0.999	0.90	0.84	00.15		
	09.1 109.1	0.03	0.997	0.02	0.83	92.03		
	0	7.28	0.980	2.35	0.78	95.89		
	28.6	7.20	0.998	2.33	0.81	5 22		
	28.0	7.00	0.999	2.31	0.78	-5.22		
	61.9	5.45	0.997	2.34	0.81	2/ 83		
G-CdTe	76.2	4 01	0.997	1.67	0.82	24.05 44.69	80.81	
	95.2	2.65	0.999	1.37	0.86	63.45		
	133.3	1.07	0.997	0.93	0.85	85 24		
	209.4	0.8	0.997	0.69	0.09	98.89		
	0	6 40	0.908	0.46	0.91	0		
	38.08	7.39	0.999	0.49	1.01	-15.5	89.8	
NAC- CdTe	57.12	5.39	0.997	0.43	1.04	15.8		
	76.16	4.09	0.993	0.37	1.05	36.1		
	95.20	2.64	0.995	0.29	1.04	58.8		
	190.40	0.53	0.992	0.13	0.88	91.7		
-	0	6.10	0.998	0.48	1.22	0		
	6.24	5.21	0.999	0.46	1.18	14.6		
MPA-	31.20	4.20	0.997	0.39	1.28	31.2	56 2	
CdTe	93.60	1.95	0.997	0.26	1.32	68.0	56.2	
	187.20	0.87	0.995	0.20	1.22	85.7		
	312.00	0.25	0.999	0.16	1.04	95.9		
	0	5.82	0.998	0.48	0.86	0		
	6.24	4.72	0.99	0.45	0.80	19.9		
GSH-	12.48	3.38	0.997	0.28	0.89	42.6	153	
CdTe	24.96	1.48	0.997	0.22	0.88	71.5	13.3	
	49.92	0.97	0.995	0.17	0.88	88.7		
	99.84	0.37	0.980	0.09	0.74	97.2		

Table S1. Parameters of S. cerevisiae growth at different concentrations of QDs.

Table S2. The comparison of cytotoxicity of different types of QDs to *S. cerevisiae* cells ^{17,18}

ODa	О-	G-	NAC-	MPA-	GSH-	AIZS
QDS	CdTe	CdTe	CdTe	CdTe	CdTe	
$IC_{50}[nmol \cdot L^{-1}]$	17.07	80.81	89.8	56.2	15.3	1000

Table S3. Comparison of different QDs-based assays for the detection of Cu²⁺.

QDs	Emission Peak/nm	Size/nm	LOD	Dynamic Range	Ref.
AIZS QDs	583	3.51	100.28 nM	0-35 μM	-
TGA-CdTe QDs	~ 550	-	-	0.1 - 5 μM	40
Silicon quantum dots (Si QDs)	460	2.3	0.5 μΜ	$5 \times 10^{71} \times 10^{5}$ M	41
GQDs@GSH-CdTe QDs	420&572	-	53 nM	0.1-1.0 μΜ	13
MPA-Ag ₂ S QDs	695	2.5±0.6	27.6 nM	25 nM-10 μM	12
Au@Ag NBs CDots		33.8±3.4/	1 81 nM	0.005.1 µM	42
AuturAg INI S-CD01S	-	3.3±0.4	4.01 1111	0.003-1 μινι	
Zinc-doped AgInS ₂ QDs	561	3.64	27.3 nM	0-340 µM	43
AIZS-GO nanocomposites	~ 600	5.2	0.18 µM	0-850 μΜ	44

Fig. S1. The fluorescence emission spectra of AIZS QDs synthesized by adjusting the pH value (pH=8.50) of the reaction system before (a) and after (b) the addition of sodium sulfide.