Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020

Supporting Information

for

Amine Decorated Polystyrene Nanobeads Incorporating π-Conjugated OPV Chromophore for Picric acid Sensing in Water

Sarabjot Kaur Makkad^{a, b}

- a) Govt. Autonomous NPG College of Science, Raipur, India.
- b) CSIR-National Chemical Laboratory, Pune, India.

Table of Content

Section	<u>Subject</u>	Page No			
Table S1	Number and weight average molar mass, polydispersity indices				
	(PDI), solid content, zeta potential of PS-OPV-NH2.				
Table S2	Dye loading content (DLC), Dye loading efficiency (DLE),	S4			
	polydispersity index (Đ).				
Table S3	Average quenching percentage of OPV emission and quenching ±				
	error (%) after the addition of the respective nitro compounds in				
	water.				
Table S4	Average quenching percentage of OPV emission and quenching \pm	S5			
	error (%) after the addition of the anions in water.				
Table S5	Average quenching percentage of OPV emission and quenching \pm	S6			
	error (%) after the addition of the cations in water.				
Table S6	Comparison table for fluorescent sensors of PA in the literature.	S7			
Sahama S1	Chamical structures of nitro anomia common da	60			
Scheme SI	Chemical structures of nitro-organic compounds.	58			
Figure S1	FTIR plot of polymer on KBr pellet.	S8			
Figure S2	Normalized intensity-average size distribution of polymer in				
	demineralized water using Dynamic Light Scattering.				
Figure S3	TEM image of PS-OPV-NH2 polymer.	S9			
Figure S4	Absorption spectra of the polymer in THF (1mg/ml) for DLC and	S9			
	DLE calculation.				
Figure S5	Solution state (a) emission and (b) excitation spectra of the	S9			
	polymer PS-OPV-NH2 in demineralized water.				
Figure S6	CIE co-ordinate diagram of PS-OPV-NH2.	S10			
Figure S7	Emission spectra for PS-OPV-NH2 depicting non-quenching of	S10			
	OPV emission on varying pH from 1 to 14.				
Figure S8	Emission spectra for PS-OPV-NH2 depicting non-quenching of	S10			
	OPV emission on varying temperature from 0°C to 60°C.				
Figure S9.	Plot of linear ranges using Stern-Volmer equation from 0 to 30	S11			
	$(R^2 = 0.982)$ and 40 to 70 μ M ($R^2 = 0.998$).				
Figure S10	Plot of absorption spectra of PS-OPV-NH2 on varying	S11			
	concentration of PA.				

Figure S11	Mechanism of quenching depicting the overlap of absorption	S11
	spectra of nitrophenols to that of OPV emission.	
Figure S12	Emission spectra of PS-OPV-NH2 after the addition of 1M NaCl.	S12
Figure S13	Quenching observed on dipping free standing film into PA in	S12
	water.	
	References	S12

Sample	Mn ^a	Mw ^a	PDI ^a (Đ)	Solid content	Zeta Potential ^b
				(0/)	
				(%)	

Table S1. Number and weight average molar mass, polydispersity indices (PDI), solid

 content, zeta potential of PS-OPV-NH2.

- a) Measured by Gel Permeation Chromatography (GPC) in Chloroform (CHCl₃) calibrated with linear, narrow molecular weight distribution polystyrene standards.
- b) Measured by Dynamic Light Scattering in water.

Table S2. Dye loading content (DLC), Dye loading efficiency (DLE), polydispersity index (Đ).

	Amount	Amount of	DLC	DLE		
Cl.	of OPV	OPV	(%) ^a	(%) ^a	Size	PDI ^b
Sample	in feed	incorporated	For	For	(nm) ^b	
	(mg)	(mg) ^a	OPV	OPV		
PS-OPV-NH2	30	16.1	1.6	53.6	182	0.08

a) Dye Loading content (DLC) and Dye Loading Efficiency (DLE) are calculated by absorption studies in THF.

b) Measured by Dynamic Light Scattering in water.

Table S3. Average quenching percentage of OPV emission and quenching \pm error (%) after the addition of the respective nitro compounds in water.

Nitro	Average Quenching	Quenching ±
compounds	(%)	Error (%)
Ph	6.8	0.4
1,2-DCB	7.1	0.5
4-NBA	7.4	0.5
BA	7.7	0.7

1,5-DNN	8.6	1.2
2,4-DNT	9.6	0.5
4-HBA	8.1	1.5
4-NT	9.6	1.8
NM	9.5	2.5
1,4-DNB	20.4	1.2
2-NP	34.3	1.1
2,4-DNP	71.3	1.9
PA	91.5	1.5

Table S4. Average quenching percentage of OPV emission and quenching \pm error (%) after the addition of the anions in water.

Nitro	Average Quenching	Quenching ±
compounds	(%)	Error (%)
NO ₂ -	2.3	0.3
SO4 ²⁻	2.7	0.6
Cl-	3.4	0.8
Br	3.7	1.3
NO ₃ -	4.1	1.9
AcO-	4.2	1.4
SO ₃ ²⁻	5.1	0.8
HPO ₄ -	5.7	1.3
F-	5.9	0.8
I-	8.1	0.4
PA	91.5	1.5

Nitro	Average Quenching	Quenching ±
compounds	(%)	Error (%)
Hg(II)	2.3	0.3
Cu(II)	2.4	0.3
Fe(II)	2.7	0.6
Pb(I)	2.7	0.5
K(I)	3.1	0.9
Ni(II)	3.2	1.6
Cr(III)	3.3	1.2
Ca(II)	3.3	1.1
Na(I)	3.4	0.8
Co(II)	3.5	2.1
Mn(II)	3.9	1.7
Zn(II)	4.0	0.5
Cd(II)	4.8	1.3
Al(III)	5.4	0.9
Cs(I)	5.9	0.8
Fe(III)	9.3	0.7
PA	91.5	1.5

Table S5. Average quenching percentage of OPV emission and quenching \pm error (%) after the addition of the cations in water.

	ity Ref.
(µM) anions	
Metal organic -	01
tramework Acetonitrile Not Checked Yes	51
Urganic Cage - 0.06 -	52
μ M Diction of the checked fees (6.4 ne (DCM)	52
(0.4 Inc (DCW)	
Small molecules 0-10 0.5 Ethanol Not Checked - Poor	<u> </u>
μΜ	
Small molecules 2-16 2 DMSO- Not Checked - Poor	S4
μM Chloroform	
Small molecules 0-20 0.35 Toulene- Not Checked - Poor	S5
μM DCM	
Metal organic 0-50 2.5 Dimethyl Not Checked - Yes	
framework μM acetamide	S6
(DMA)	
rolumer - 4.57 Miethanol Not Checked - Yes	57
Small molecules 0.1 28 Water/THE No interference Ves	58
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	50
Tetraphenyl - 0.005 Not Checked Yes	
ethelene µM Water/ THF	S9
Nanosphere (9:1)	
Iridium complex Water/acetone Slightly for Hg(II) No effect Yes	S10
(9:1)	
Conjugated 0-51 0.72 Water/THF Not Checked - Not stud	ied S11
polyelectrolytes μM (9:1)	
Inorganic - (54 Not Checked - Not stud	ied S12
polymer (0.1) water/ 1 HF	
Hyperbranched - 1 Water/THE Not Checked - Not stud	ied S13
polymer ug/mL (9:1)	100 515
Functional 1 µM Water/THF Not Checked - Non-	S14
polymer (9:1) selecti	/e
MoS2 Quantum 0.99-36.5 0.095 Moderate - Yes	S15
dots interference from	
Water Fe(III), Ni(II),	
	016
Conjugated 0-20 128 ppt Not Checked - Yes	S16
polyelectrolytes water Graphene oxide 0.55	\$17
Undprine oxide - 0.55 Not Checked - 1es	517
Small molecules 0.01-0.07 0.013 No interference - Yes	<u>S18</u>
uM Water	510
Carbon dots - 0.10 Moderate pH dependent	
μM Water interference quenching Yes	S19
observed	
Carbon dots - 1 µM Not Checked pH dependent	S20
Water quenching Yes	
Non conjugated 0.05-70 Appreciable pH dependent	
polymer NPs 0.026 Water interference from quenching $M_{0.026}$	821
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
PS nanobeads 0-30: 0.058 Water No interference at No Ves	This
$ 40-70 \mu M $ all dependence	work

Scheme S1. Chemical structures of nitro-organic compounds.

Figure S1. FTIR plot of polymer on KBr pellet.

Figure S2. Normalized intensity-average size distribution of polymer in demineralized water using Dynamic Light Scattering.

Figure S3. TEM image of PS-OPV-NH2 polymer.

Figure S4. Absorption spectra of the polymer in THF (1mg/ml) for DLC and DLE calculation.

Figure S5. Solution state (a) emission (at 390 nm) and (b) excitation spectra (collected at 445 nm) of the polymer PS-OPV-NH2 in demineralized water.

Figure S6. CIE co-ordinate diagram of PS-OPV-NH2.

Figure S7. Emission spectra for PS-OPV-NH2 depicting non-quenching of OPV emission on varying pH from 1 to 14.

Figure S8. Emission spectra for PS-OPV-NH2 depicting non-quenching of OPV emission on varying temperature from 0°C to 60°C.

Figure S9. Plot of linear ranges using Stern-Volmer equation from 0 to 30 ($R^2 = 0.982$) and 40 to 70 μ M ($R^2 = 0.998$).

Figure S10. Plot of absorption spectra of PS-OPV-NH2 on varying concentration of PA.

Figure S11. Mechanism of quenching depicting the overlap of absorption spectra of nitrophenols to that of OPV emission.

Figure S12. Emission spectra of PS-OPV-NH2 after the addition of 1M NaCl.

Figure S13. Quenching observed on dipping free standing film into PA in water.

References

S1. S. S. Nagarkar, B. Joarder, A. K. Chaudhari, S. Mukherjee, S. K. Ghosh. *Angew. Chem. Int. Ed.*, 2013, **52**, 2881-2885.

S2. K. Acharyya and P. S. Mukherjee. Chem. Commun., 2014, 50, 15788-15791.

S3. N. Venkatramaiah, S. Kumar and S. Patil. Chem. Commun., 2012, 48, 5007-5009.

S4. B. Roy, A. K. Bar, B. Gole and P. S. Mukherjee. J. Org. Chem., 2013,78, 1306-1310.

S5. V. Bhalla, A. Gupta, M. Kumar, D. S. S. Rao, S. K. Prasad. ACS Appl. Mater. Interfaces, 2013, 5, 672-679.

S6. Z. Q. Shi, Z. J. Guo and H. G. Zheng. Chem. Commun., 2015, 51, 8300-8303.

S7. N. Sang, C. Zhan and D. Cao. J. Mater. Chem. A, 2015, 3, 92-96.

S8. A. Ding, L. Yang, Y. Zhang, G. Zhang, L. Kong, X. Zhang, Y. Tian, X. Tao and J. Yang. *Chem. Eur. J.*, 2014, **20**, 12215-12222.

S9. H. T, Feng and Y. S. Zheng. Chem. Eur. J., 2014, 20, 195-201.

S10. X. G. Hou, Y. Wu, H. T. Cao, H. Z. Sun, H. B. Li, G. G. Shan and Z. M. Su. *Chem. Commun.*, 2014, **50**, 6031-6034.

S11. W. Z. Yuan, H. Zhao, X. Y. Shen, F. Mahtab, J. W. Y. Lam, J. Z. Sun and B. Z. Tang. *Macromolecules*, 2009, **42**, 9400-9411.

S12. P. Lu, J. W. Y. Lam, J. Liu, C. K. W. Jim, W. Yuan, C. Y. K. Chan, N. Xie, Q. Hu, K.
K. L. Cheuk and B. Z. Tang. *Macromolecules*, 2011, 44, 5977-5986.

S13. H. Li, H. Wu, E. Zhao, J. Li, J. Z. Sun, A. Qin, and B. Z. Tang. *Macromolecules*, 2013, 46, 3907-3914.

S14. Y. Liu, M. Gao, J. W. Y. Lam, R. Hu and B. Z. Tang. *Macromolecules*, 2014, **47**, 4908-4919.

S15. Y. Wang and Y. Ni. Anal. Chem., 2014, 86, 7463-7470.

S16. S. Hussain, A. H. Malik, M. A. Afroz and P. K. Iyer. *Chem. Commun.*, 2015, **51**, 7207-7210.

S17. D. Dinda, A. Gupta, B. K. Shaw, S. Sadhu and S. K. Saha. ACS Appl. Mater. Interfaces, 2014, 6, 10722-10728.

S18. B. Gogoi and N. Sen Sarma. ACS Appl. Mater. Interfaces. 2015, 7, 11195-11202.

S19. H. K. Sadhanala and K. K. Nanda. J. Phys. Chem. C. 2015, 119, 13138-13143.

S20. Q. Niu, K. Gao, Z. Lin and W. Wu. Anal. Methods. 2013, 5, 6228-6233.

S21. S. G. Liu, D. Luo, N. Li, W. Zhang, J. L. Lei, N. B. Li and H. Q. Luo. *ACS Appl. Mater. Interfaces*, 2016, **8**, 21700-21709.