Supporting Information

Synthesis of anionic Ionic Liquids@Covalent Organic Materials for selective adsorption of cationic dye with superior capacity

Meng Dang^a, Qi-Liang Deng^a, Yan-Yan Tian^a, Chang-Liu^a, Hai-Peng Shi^a, Guo-Zhen Fang^a*, and Shuo Wang^{a,b}*

^aState Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science & Technology, Tianjin, 300457, China.
^bBeijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing, 100048, China.

S1. General information

1.Materials and reagents

All chemicals and reagents used were at least of analytical grade. Ultrapure water was prepared in doubly deionized water (DDW, 18.2 MU cm⁻¹) from a Millipore water purication system (Millipore, Billerica, MA, USA). 1,3,5-Triformylphloroglucinol (Tp) was purchased from Yuhao Chemical Technology Co. Ltd. (Hangzhou, China). 2,5-Diaminobenzenesulfonic acid (Pa), and 2,2'-benzidinedisulfonic acid (Bd) were purchased from Macklin Biochemical Co. Ltd. (Shanghai, China). Imidazole, ethanol, methanol, N,N-dimethylformamide (DMF), 1,4-dioxane, mesitylene, phosphorous acid (H₃PO₄), disodium phosphate dodecahydrate (NaH₂PO₄·12H₂O), sodium dihydrogen phosphate, (Na₂HPO₄·2H₂O), hydrochloric acid (HCl), sodium hydroxide (NaOH) and acetonitrile (ACN) were purchased from Sinopharm Chemical Reagent Co. Ltd. (Shanghai, China). 1-Phenylimidazole was obtained from TCI (Shanghai, China) and 1butylimidazole was obtained from Alfa Aesar (Shanghai, China), respectively. Methylene Blue (MB), methyl orange (MO), reactive brilliant red K-2BP (RBR), basic red 5 (BR), crystal violet (CV), and basic orange 2 (BO) were purchased from Sanjiang Chemical Technology Co. Ltd. (Tianjin, China). Nile red (NR) and calcein (CA) were purchased from Yuanye Biotechnology Co. Ltd. (Shanghai, China). Auramine O (AO) was obtained from Adamas Reagent Co. Ltd. (Shanghai, China). Azure A (AZA), Azure B (AZB) and Azure C (AZC) were purchased from Amresco Co. Ltd. (USA). Congo red (CR) and bismarck brown R (BRR) were obtained from J&K Scientific Ltd. (Beijing, China). Arginine was obtained from Sigma-Aldrich (St., Louis, MO).

S2. Figures and Tables

	Molecular	Parention	Fragment	Cone	Collision	
Analyte	mass	(m/z)	ion (m/z)	voltage	energy	Charge
	mass	(111/2)	*	(V)	(eV)	
Methylene	272.0	281 2	268.1	120	40	
Blue	575.9	204.2	252.2	120	50	
	201.9	255.8	213.7	130	30	
Azure A	291.8	255.8	198.8	130	40	
A Juro D	205.8	260.8	253.7	130	28	
AZULE D	303.8	209.8	227.8	130	30	
A TURO C	0 777 0	241.9	226.8	130	33	
Azure C	277.8	241.9	199.8	130	26	
Auromina		268	147	130	29	р. :/:
Aurannine	303.8	268	131	130	55	Positive
0		268	107	130	33	
Crystal	272 5	372	356.1	130	40	
Violet	3/3.3	372	340	130	51	
			237.1	135	40	
Basic Red	288.8	253.1	222	135	50	
3			210.1	135	33	
Basic	240 7	212.4	120.2	120	15	
Orange 2	248.7	213.4	77.2	120	15	

Table S1. Cationic dye molecules and their properties used in HPLC-MS analyze

* Quantitative ion.

		TpPa-SO ₃	
		Space group P 1	
	a = 22.8 Å, b =22.77	' Å, c =4.52 Å, $\alpha = 90^{\circ}$,	$\beta = 90^\circ, \gamma = 120^\circ$
atom	Х	у	Z
С	0.01939	0.50187	0.5
С	0.13839	0.5297	0.5
С	0.20854	0.57990	0.5
С	0.23264	0.65104	0.5
С	0.25782	0.55190	0.5
Ν	0.08742	0.54403	0.5
0	0.19149	0.67203	0.5
Ο	0.23768	0.49668	0.5
С	0.30249	0.70059	0.5
С	0.32845	0.60643	0.5
С	0.34923	0.6768	0.5
0	0.411162	0.7191	0.5
С	0.32227	0.7707	0.5
Ν	0.38593	082389	0.5
С	0.40856	0.89167	0.5
С	0.37479	0.92767	0.5
С	0.47483	0.92911	0.5
S	0.296207	0.89281	0.5
Ο	0.29235	0.0.94741	0.5
Ο	0.28291	0.83109	0.5
Ο	0.23157	0.86508	0.5
Н	0.006561	0.58192	0.5
Н	0.10745	0.409597	0.5
Н	0.10139	0.59135	0.5
Н	0.12483	0.47965	0.5
Н	0.28553	0.78279	0.5
Н	0.42066	0.81197	0.5
Н	0.500075	0.90501	0.5

Table S2. Fractional atomic coordinates for the unit cell of TpPa-SO₃

Materials	C (%)	N (%)	H (%)	S (%)	-
TpPa-SO ₃	42.21	11.58	5.35	13.35	
$TpBd-(SO_3)_2$	41.93	8.60	5.15	10.04	
TpCR-(SO ₃) ₂	34.67	6.23	3.06	8.05	
ImI@TpBd-(SO ₃) ₂	46.59	8.66	6.08	8.85	
BuImI@TpBd-(SO ₃) ₂	42.94	8.62	5.69	9.97	
PheImI@TpBd-(SO ₃) ₂	43.1	8.28	5.77	10.89	
					Ξ

Table S3 Comparison of element analyses of C, N, H, and S

Materials	Surface area (m ² g ⁻¹)	Pore volume (cm ³ g ⁻¹)	Pore size (nm)
TpPa-SO ₃	70.8	0.1709	1.7, 2.9
$TpBd-(SO_3)_2$	60.5	0.1711	9.3
$TpCR-(SO_3)_2$	9.6	0.0190	2.9
ImI@TpBd-(SO ₃) ₂	61.8	0.1722	14.5, 23.8
BuImI@TpBd-(SO ₃) ₂	33.7	0.1245	2.3, 14, 21
PheImI@TpBd-(SO ₃) ₂	40.2	0.1125	6.8

Table S4 Comparison of surface area and pore volume of the as-prepared materials

Fig. S1 The molecular models of imidazole derivatives were displayed in the Bondi van der waals (VDW) style (blue, carbon; white, hydrogen; blue, nitrogen) calculated by Multiwfn; Imidazole with a size of $6.485 \times 5.546 \times 2.75$ Å, 1-buthylimidazole with a size of $10.726 \times 6.612 \times 4.067$ Å, and 1-phenylimidazole with a size of $9.689 \times 6.805 \times 6.554$ Å

Fig. S2 Langmuir model of MB in TpBd-(SO₃)₂ and ImI@TpBd-(SO₃)₂

Materials	$q_e (mg g^{-1})$	Ref
KOH-activated carbon from sucrose	MB 704.2	S 1
Sulfuric acid activated (RHS) activated rice husk carbon	CV 64.9	S2
Magnetic nanocomposite beads comprising carboxylic acid functionalized carbon nanotube	MB 465.5; Direct red 380.7	S3
Fe ₃ O ₄ @polydopamine-Ag hollow microspheres	MB 102.0	S4
EDTA-Cross-Linked β -Cyclodextrin	MB 88.5; CV 114	S5
Aminocarboxylate/maleic acid resin	MB 2101; Hg(II) 263	S6
Bakelite-type anionic microporous organic polymers	MB 712.2; MG 593.6	S7
Magnetic graphene oxide modified zeolite	MB 97.3	S 8
Poly (NIPAAm/AA/N-allylisatin) nanohydrogel	MB 392.2; AO 337.8; BO 961.5	S 9
Magnetic polyacrylamide microspheres	MB 1990; GV 1850; BR 1937	S10
ImI@TpBd-(SO ₃) ₂	MB 2865.3; AZB 1015; BBR 974.1; AZC 936.3; AZA, AO, CV, BR, BO 597.9-763.1	This work

Table S5 Comparison of cationic dyes adsorption

Fig. S3 Freundlich model of MB in TpBd-(SO₃)₂ and ImI@TpBd-(SO₃)₂

Matariala	Freundlich model				
Wraterials	$K_F(mg g^{-1})$	\mathbf{b}_{F}	$q_e(cal) (mg g^{-1})$	R ²	
TpBd-(SO ₃) ₂	40.703	0.906	2641.2	0.9496	
ImI@TpBd-(SO ₃) ₂	48.444	0.885	2854.9	0.9297	

Table S6 Freundlich model constants and correlation coefficient

Fig. S4 Pseudo-first-order model of MB in TpBd-(SO₃)₂ and ImI@TpBd-(SO₃)₂

Fig. S5 Pseudo-second-order model of MB in TpBd-(SO₃)₂ and ImI@TpBd-(SO₃)₂

Туре	Parameter	$TpBd-(SO_3)_2$	ImI@TpBd-(SO ₃) ₂
	$q_{e} (mg g^{-1})$	2307.4	2748.7
Pseudo-Ilfst-order	k ₁ (min ⁻¹)	6.068	2.996
kinetics	\mathbb{R}^2	0.7492	0.8449
	$q_{e,exp} (mg g^{-1})$	2645.0	2873.2
Pseudo-second- order kinetics	$q_{e} (mg g^{-1})$	2627.0	2866.2
	k_2 (g mg ⁻¹ min ⁻¹)	1.6227×10 ⁻⁵	3.493×10 ⁻⁵
	\mathbb{R}^2	0.9971	0.9988

Table S7 Comparison of kinetic model parameters of TpBd-(SO₃)₂ and ImI@TpBd-(SO₃)₂

Fig. S6 Recycle studies of MB adsorption in $ImI@TpBd-(SO_3)_2$

S3. References

- [1] K. C. Bedin, A. C. Martins, A. L. Cazetta, O. Pezoti, V. C. Almeida, KOH-activated carbon prepared from sucrose spherical carbon: adsorption equilibrium, kinetic and thermodynamic studies for methylene blue removal, Chem. Eng. J. 286 (2016) 476-484.
- [2] K. Mohanty, J.T. Naidu, B.C. Meikap, M. N. Biswas, Removal of crystal violet from wastewater by activated carbons prepared from rice husk, Ind. Eng. Chem. Res. 45 (2006) 5165-5171.
- [3] S. Saber-Samandari, S Saber-Samandari, H. Joneidi-Yekta, M. Mohseni, Adsorption of anionic and cationic dyes from aqueous solution using gelatin-based magnetic nanocomposite beads comprising carboxylic acid functionalized carbon nanotube, Chem. Eng. J. 308 (2017) 1133-1144.
- [4] K. Cui, B. Yan, Y. Xie, H. Qian, X. Wang, Q. Huang, Y. He, S. Jin, H. Zeng, Regenerable urchin-like Fe₃O₄@PDA-Ag hollow microspheres as catalyst and adsorbent for enhanced removal of organic dyes, J. Hazard. Mater. 350 (2018) 66-75.
- [5] F. Zhao, E. Repo, D. Yin, Y. Meng, S. Jafari, M. Sillanpää, EDTA-Cross-Linked β-Cyclodextrin: An Environmentally Friendly Bifunctional Adsorbent for Simultaneous Adsorption of Metals and Cationic Dyes, Environ. Sci. Technol. 49 (2015) 10570-10580.
- [6] S.A. Ali, I.Y. Yaagoob, M.A.J. Mazumder, H. A. Al-Muallem, Fast removal of methylene blue and Hg(II) from aqueous solution using a novel super-adsorbent containing residues of glycine and maleic acid, J. Hazard. Mater. 369 (2019) 642-654.
- [7] B Wang, Q Zhang, G Xiong, F Ding, Y He, B Ren, L. You, X. Fan, C. Hardacre,Y. Sun, Bakelite-type anionic microporous organic polymers with high capacity

for selective adsorption of cationic dyes from water, Chem. Eng. J. 366 (2019) 404-414.

- [8] T. Huang, M. Yan, K. He, Z. Huang, G. Zeng, A. Chen, M. Peng, H. Li, L. Yuan, G. Chen, Efficient removal of methylene blue from aqueous solutions using magnetic graphene oxide modified zeolite, J. Colloid Interface Sci. 543 (2019) 43-51.
- [9] Viran P. Mahida, Manish P. Patel, Removal of some most hazardous cationic dyes using novel poly (NIPAAm/AA/N-allylisatin) nanohydrogel, Arab. J. Chem. (2016) 9 430-442.
- [10] T. Yao, S. Guo, C. Zeng, C. Wang, L. Zhang, Investigation on efficient adsorption of cationic dyes on porous magnetic polyacrylamide microspheres, J. Hazard. Mater. 292 (2015) 90-97.