Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020

Supplementary Information

An exclusive deposition method of silver nanoparticles on TiO₂ particles via

low-temperature decomposition of silver-alkyldiamine complexes in aqueous media

Tomohiro Yahagi,^{a,b} Takanari Togashi,^a and Masato Kurihara^{*a}

^aFaculty of Science, Yamagata University,

1-4-12 Kojirakawa-machi, Yamagata 990-8560, Japan.

^bTechnical Support Center, National Institute of Technology, Tsuruoka College,

104 Sawada, Inooka, Tsuruoka, Yamagata 997-8511, Japan.

(E-mail: kurihara@sci.kj.yamagata-u.ac.jp)

Fig. S1 The photographs of aqueous solutions of AgNO₃ in the presence of different molar ratios of dmpda, where the ratios of dmpda to AgNO₃ were 1.0 (i), 1.5 (ii), 2.0 (iii), 4.0 (iv) and 8.0 (v) mole/mole. These solutions were aqueous mixtures of water (10 mL), 772 μ L of an aqueous solution of AgNO₃ (1.00 mol L⁻¹), and the various molar ratios of dmpda.

Fig. S2 109 Ag-NMR spectra of a transparent and colourless aqueous mixture of AgNO₃ and an alkylamine, dmpda (a) or propylamine (b), with a molar ratio of 1 : 4 mole/mole. The aqueous solution composed of AgNO₃ (3.13 mmol), alkylamine (12.5 mmol) and water (4 mL), and D₂O (1 mL) was further added into the aqueous solution as a D-lock solvent. An aqueous solution of AgNO₃ without alkylamines shows one signal at 0 ppm which is employed as a standard signal for calibrating chemical shifts (δ) of 109 Ag-NMR spectra.

Fig. S3 XPS spectrum derived from the 3d orbitals of Ag in Ag₄/TiO₂ sample.

Fig. S4 TEM images of Ag_x/TiO_2 samples after the catalytic reactions in the cases of x

= 2 (a), 4 (b), 8 (c) and 16 (d).