Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Material (ESI) for *RSC Adv.* This journal is © The Royal Society of Chemistry 2019

Supporting information

Total Synthesis of Palmarumycin BGs, C1 and Guignardin E

Xinlei Liu^a, Shuyi Li^a, Xinyu Wei^a, Yu Zhao^a, Daowan Lai^b, Ligang Zhou^b, and Mingan Wang^{a,*}

^aDepartment of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, People's Republic of China; ^bDepartment of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, People's Republic of China.

E-mail: wangma@cau.edu.cn

Table of contents

1. HPLC, HR-ESI-MS, ¹ H and ¹³ C NMR spectra for compounds 1-7, and 10-14	2-20
2. The crystal structure parameters for compound 14	21-24

Figure S2¹³C NMR of compound **10**

Figure S4¹H NMR of compound **12**

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

Figure S5	¹³ C NMR	of compound	12
-----------	---------------------	-------------	----

Peak#	Ret. Time [min]	Area [mAU*s]	Height [mAU]	Conc. [%]
1	7.547	6875.209	652.997	44.172
2	8.674	8689.386	659.877	55.823
Total		15564.595		

3.0344e4

7.0712

0945

.091

Figure S6 HPLC profiles of compound (\pm)- and (-) Palmarumycin C₂ (12)

7.0624

6.9277 6.9287 6.9287 6.9287 6.8997 3.2719 3.2600 3.3.2600 3.3.2119 3.3.2008 2.9739 2.9739 2.9739 2.9739 2.9739 2.9737 2.9777

Total

5240

7.5119

4867

4651

.4396

.3496

3278

7.3241

7.260

2.3472

5832

Figure S7¹H NMR of compound 1

Figure S9 HPLC profile of compound 1

Peak#	Ret. Time [min]	Area [mAU*s]	Height [mAU]	Conc. [%]
1	10.240	220.3720	17.0249	4.165
2	14.248	5069.9824	213.7812	95.835
Total		5290.3544		

Sample No.	Formula (M)	Ion Formula	Measured m/z	Calc m/z
1	$C_{20}H_{14}O_5$	[M-H]-	333.0791	333.0768

Figure S11 ¹H NMR of compound **2**

Figure S13 HPLC profile of compound 2

Figure S15¹H NMR of compound **3**

Figure S17 HPLC profile of compound **3**

Figure S23 ¹H NMR of compound 4

Sample No.	Formula (M)	Ion Formula	Measured m/z	Calc m/z
4	C ₂₀ H ₁₅ ClO ₅	[M-H]-	369.0548	369.0535

7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 fl (ppm) Figure S27 ¹H NMR of compound **14**

Figure S29 HPLC profile of compound 14

Figure S33 HPLC profile of compound 5

2. The crystal structure parameters for compound 14

Table 1: Crystal data and structure refinement for exp_6109	
Identification code	exp_6109
Empirical formula	$C_{20}H_{15}ClO_5$
Formula weight	370.77
Temperature / K	114.0(4)
Crystal system	monoclinic
Space group	$P2_1$
a / Å, b / Å, c / Å	8.7889(3), 10.1048(5), 8.8667(3)
$\alpha /^{\circ}, \beta /^{\circ}, \gamma /^{\circ}$	90.00, 93.111(3), 90.00
Volume / Å ³	786.30(6)
Z	2
ρcalc / mg mm ⁻³	1.566
μ/mm^{-1}	2.434
F(000)	384
Crystal size / mm ³	0.35 imes 0.24 imes 0.03
2Θ range for data collection	10.08 to 142.34°
Index ranges	$-10 \le h \le 10, -11 \le k \le 12, -9 \le l \le 10$
Reflections collected	6127
Independent reflections	2729 [R(int) = 0.0362 (inf-0.9 Å)]
Data/restraints/parameters	2729/1/238
Goodness-of-fit on F ²	1.042
Final R indexes $[I \ge 2\sigma (I) \text{ i.e. } F_0 \ge 4\sigma (F_0)]$	$R_1 = 0.0379, wR_2 = 0.0975$
Final R indexes [all data]	$R_1 = 0.0394, wR_2 = 0.0990$
Largest diff. peak/hole / e Å ⁻³	0.358/-0.316
Flack Parameters	0.006(16)
Completeness	0.9993

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for exp_6109. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	Х	У	Z	U(eq)
Cl1	1905.7(7)	1342.1(7)	1431.9(7)	28.48(18)
O1	397.2(18)	6008.5(18)	3231.1(17)	16.1(4)
O2	53.0(19)	4145.1(18)	4783.0(18)	15.7(4)
O5	-3985.4(19)	2522(2)	-55.5(19)	22.7(4)
O3	1290(2)	4482(2)	919.3(18)	20.5(4)
C3	536(3)	2442(3)	2204(3)	16.5(5)
C18	2499(3)	7489(3)	3709(2)	17.7(5)
C11	1363(3)	4437(3)	5655(2)	15.1(5)
C17	1745(2)	6352(3)	4038(2)	15.2(5)
C7	-2694(3)	5405(3)	3076(3)	17.7(5)

4362(3)	7058(3)	5788(3)	19.9(5)
2235(3)	5550(3)	5271(3)	15.2(5)
3567(3)	5898(3)	6175(2)	17.4(5)
-966(3)	2368(3)	1229(3)	16.1(5)
3828(3)	7837(3)	4603(3)	20.5(5)
-724(2)	2487(2)	-358.4(17)	20.3(4)
3970(3)	5083(3)	7444(3)	18.6(5)
3093(3)	4015(3)	7785(3)	17.8(5)
-3519(3)	3461(3)	978(3)	17.2(5)
-1612(3)	4496(3)	2633(2)	14.9(5)
-2024(3)	3482(3)	1632(2)	15.2(5)
-4175(3)	5346(3)	2458(3)	19.9(5)
-4582(3)	4389(3)	1386(3)	19.6(5)
1748(3)	3687(3)	6906(3)	17.1(5)
21(3)	4632(3)	3269(2)	14.5(5)
1146(3)	3839(3)	2336(3)	16.2(5)
	$\begin{array}{c} 4362(3)\\ 2235(3)\\ 3567(3)\\ -966(3)\\ 3828(3)\\ -724(2)\\ 3970(3)\\ 3093(3)\\ -3519(3)\\ -1612(3)\\ -2024(3)\\ -4175(3)\\ -4582(3)\\ 1748(3)\\ 21(3)\\ 1146(3)\end{array}$	$\begin{array}{cccc} 4362(3) & 7058(3) \\ 2235(3) & 5550(3) \\ 3567(3) & 5898(3) \\ -966(3) & 2368(3) \\ 3828(3) & 7837(3) \\ -724(2) & 2487(2) \\ 3970(3) & 5083(3) \\ 3093(3) & 4015(3) \\ -3519(3) & 3461(3) \\ -1612(3) & 4496(3) \\ -2024(3) & 3482(3) \\ -4175(3) & 5346(3) \\ -4175(3) & 5346(3) \\ -4582(3) & 4389(3) \\ 1748(3) & 3687(3) \\ 21(3) & 4632(3) \\ 1146(3) & 3839(3) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 3 Anisotropic Displacement Parameters (Å²×10³) for exp_6109. The Anisotropic displacement factor exponent takes the form: - $2\pi^{2}[h^{2}a^{*2}U_{11}+...+2hka\times b\times U_{12}]$

Atom	U_{11}	U_{22}	U_{33}	U_{23}	U ₁₃	U ₁₂
Cl1	20.8(3)	27.9(4)	36.1(3)	-12.6(3)	-3.7(2)	9.7(3)
01	16.1(8)	15.6(10)	16.3(7)	1.0(6)	-1.3(6)	-1.1(6)
02	15.3(7)	18.7(11)	12.9(8)	-0.7(6)	-0.4(6)	-4.1(7)
05	17.6(8)	28.9(12)	21.1(8)	-5.2(8)	-3.9(6)	-0.5(8)
03	23.3(8)	24.2(11)	14.2(7)	-2.3(7)	3.1(6)	-2.6(7)
C3	15.1(11)	16.6(14)	17.6(11)	-2.8(9)	-0.6(8)	4.5(9)
C18	20.8(12)	18.1(14)	14.8(10)	0.7(9)	5.3(8)	1.4(10)
C11	14(1)	19.5(14)	11.9(10)	-3.7(9)	1.0(8)	-0.6(9)
C17	12.3(10)	20.3(13)	13.3(10)	-3.6(10)	2.9(7)	-1.5(10)
C7	19.3(12)	18.5(14)	15.0(11)	-0.3(9)	0.3(9)	-1.9(10)
C20	17.8(12)	23.8(15)	18.2(11)	-8.8(10)	3.4(9)	-3.6(10)
C16	15.0(11)	17.1(14)	13.6(10)	-3.9(9)	2.7(8)	0.8(9)
C15	15.1(11)	22.6(15)	14.8(11)	-5.9(9)	2.9(8)	0.6(9)
C4	15.1(11)	16.6(13)	16.1(10)	-2.2(9)	-1.8(8)	-0.8(9)
C19	20.1(12)	20.8(14)	21.3(12)	-7.3(10)	8.2(9)	-7.7(10)
04	24.2(9)	23.4(11)	13.1(8)	-5.2(7)	0.7(6)	3.8(8)
C14	15.8(11)	24.3(15)	15.3(10)	-7.9(10)	-1.9(8)	1.2(10)
C13	20.8(12)	21.7(14)	10.8(10)	-1.9(9)	-1.2(9)	3.4(10)
C10	17.2(11)	21.3(14)	13(1)	1.8(9)	-0.3(8)	-1.7(10)
C6	14.6(10)	18.4(13)	11.6(10)	3.2(9)	0.1(8)	-0.1(9)
C5	16.0(11)	18.0(14)	11.7(10)	3.5(9)	0.7(8)	-0.2(9)
C8	18.8(12)	23.5(15)	17.4(11)	2.8(10)	1.3(9)	5.6(10)
C9	13.7(11)	29.4(16)	15.4(10)	3.1(10)	-2.2(8)	0.6(10)
C12	18.1(12)	18.0(15)	15.5(11)	-2.5(9)	2.7(8)	-0.7(10)
C1	15.4(11)	13.6(13)	14.3(10)	0.2(9)	-1.6(8)	-1.3(9)
C2	12.9(10)	19.4(14)	16.3(10)	-2.2(9)	-0.1(8)	0.0(9)

Table 4 Bond Leng	gths for exp 6109.				
Atom	Atom	Length/Å	Atom	Atom	Length/Å
Cl1	C3	1.800(2)	C7	C8	1.386(3)
01	C17	1.394(3)	C20	C15	1.417(4)
01	C1	1.431(3)	C20	C19	1.375(4)
O2	C11	1.383(3)	C16	C15	1.426(3)
O2	C1	1.428(3)	C15	C14	1.423(4)
O5	C10	1.366(3)	C4	O4	1.440(3)
O3	C2	1.426(3)	C4	C5	1.516(3)
C3	C4	1.540(3)	C14	C13	1.369(4)
C3	C2	1.512(4)	C13	C12	1.419(3)
C18	C17	1.365(4)	C10	C5	1.407(3)
C18	C19	1.420(3)	C10	C9	1.386(4)
C11	C16	1.413(4)	C6	C5	1.390(4)
C11	C12	1.371(3)	C6	C1	1.520(3)
C17	C16	1.410(3)	C8	C9	1.389(4)
C7	C6	1.394(4)	C1	C2	1.546(3)

Table 5 Bond Angle	es for exp_6109	Э.					
Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C17	O1	C1	114.88(19)	C13	C14	C15	120.7(2)
C11	O2	C1	115.14(17)	C14	C13	C12	121.7(2)
C4	C3	Cl1	109.09(16)	05	C10	C5	121.8(2)
C2	C3	Cl1	111.37(17)	05	C10	C9	117.6(2)
C2	C3	C4	112.2(2)	C9	C10	C5	120.6(2)
C17	C18	C19	118.9(2)	C7	C6	C1	118.7(2)
02	C11	C16	118 8(2)	C5	C6	C7	120.5(2)
C12	C11	02	119.7(2)	C5	C6	C1	120.8(2)
C12	C11	C16	1214(2)	C10	C5	C4	1175(2)
01	C17	C16	1181(2)	C6	C5	C4	123.8(2)
C18	C17	01	120.6(2)	C6	C5	C10	118.7(2)
C18	C17	C16	120.0(2) 121.2(2)	C7	C8	C9	120.7(2)
C8	C7	C10 C6	121.2(2) 120.0(2)	C10	C9	C8	120.2(2) 119.8(2)
C19	C20	C15	120.0(2) 120.5(2)	C10	C12	C13	119.0(2) 118.5(2)
C11	C16	C15	120.3(2) 120.0(2)	01	C12	C15	110.3(2) 107 1(2)
C17	C16	C13	120.0(2) 110 8(2)	01			107.1(2) 100.65(18)
C17	C16	C11 C15	119.0(2) 120.1(2)	01		01	109.05(18) 111.25(18)
C17	C10 C15	C15	120.1(2) 117.0(2)	02			111.55(10) 106.60(10)
C20 C20	C15	C10 C14	117.9(2) 124.5(2)	02			110.09(18)
C20	C15	C14 C16	124.3(2) 117.6(2)	02			110.1(2) 111.00(10)
014		C10 C2	117.0(2)				111.90(19)
04	C4	03	112.13(18)	03	C2	C3	113.89(19)
04	C4	05	107.08(19)	03	C2	Cl	109.0(2)
05	C4	03	110.4/(19)	03	C2	CI	106.94(19)
C20	C19	C18	121.4(2)				
Table 6 Torsion An	gles for exp 61	09.					
Α	8	B	С	D			Angle/°
Cl1		C3	C4	04			-48 4(3)
Cl1		C3	C4	C5			-167 80(16)
C11		C3	C^2	03			69.8(2)
Cl1		C_3	C^2	C1			-169.81(15)
01		C17	C16	C11			0.0(3)
01		C17	C16	C15			-177.0(2)
01		C1	C_{10}	03			-177.0(2)
01			C^2	C3			-17077(17)
02		C11	C16	C17			13(3)
02		C11	C16	C15			1782(2)
02		C11	C10 C12	C13			-179.6(2)
02			C12	03			-170.0(2)
02			C^2	C3			-170.00(10) 66.4(2)
02		C10	C5				-4.0(3)
05		C10	C5	C4 C6			177.6(2)
05		C10	C9	C8			177.0(2) 178.5(2)
		C10	C5	C10			-1723(2)
		C4 C4	C5	C10			-1/2.3(2) 6.1(3)
C18		C17	C16	C11			174.9(2)
C18		C17	C10 C16	C15			$\frac{1}{4}$, $J(2)$
C10 C11		Ω^{2}	C10 C1	01			-2.0(-1)
C11		$\frac{02}{02}$		01 C6			-50.0(3)
C11		02					-107.1(2) 71.2(2)
C11		C16	C15	C20			177.0(2)
C11		C16	C15	C20			-177.0(2)
		01		02			0.4(3)
C17		01		02			31.8(2) 169.11(10)
017		01					100.11(10)
017				02			-70.3(2)
C17			019	C20			-0.2(4)
C17		C16	CIS	C20			-0.1(3)
C17		C16	C15	C14			177.4(2)
C7		C6	C5	C4			-172.9(2)
C7		C6	CS	C10			5.4(3)
C7		C6	Cl	01			-42.9(3)
C7		C6	C1	O2			76.4(3)

C7	C6	C1	C2	-163.1(2)
C7	C8	C9	C10	2.5(4)
C20	C15	C14	C13	176.5(2)
C16	C11	C12	C13	-2.8(4)
C16	C15	C14	C13	-0.7(4)
C15	C20	C19	C18	-1.8(4)
C15	C14	C13	C12	-0.8(4)
C4	C3	C2	O3	-52.9(3)
C4	C3	C2	C1	67.6(2)
C19	C18	C17	O1	177.0(2)
C19	C18	C17	C16	2.1(4)
C19	C20	C15	C16	1.9(3)
C19	C20	C15	C14	-175.3(2)
O4	C4	C5	C10	65.4(3)
O4	C4	C5	C6	-116.3(2)
C14	C13	C12	C11	2.5(4)
C6	C7	C8	C9	-0.6(4)
C6	C1	C2	O3	71.4(2)
C6	C1	C2	C3	-52.1(2)
C5	C10	C9	C8	-0.4(4)
C5	C6	C1	O1	137.3(2)
C5	C6	C1	O2	-103.4(2)
C5	C6	C1	C2	17.1(3)
C8	C7	C6	C5	-3.4(4)
C8	C7	C6	C1	176.8(2)
C9	C10	C5	C4	174.9(2)
C9	C10	C5	C6	-3.5(3)
C12	C11	C16	C17	-175.6(2)
C12	C11	C16	C15	1.4(4)
C1	01	C17	C18	158.1(2)
C1	01	C17	C16	-26.9(3)
C1	O2	C11	C16	24.6(3)
C1	O2	C11	C12	-158.5(2)
C1	C6	C5	C4	6.9(3)
C1	C6	C5	C10	-174.8(2)
C2	C3	C4	O4	75.5(3)
C2	C3	C4	C5	-43.9(3)