Electronic Supplementary Information (ESI)

Superhydrophobic Lotus-leaf-like Surface Made from Reduced Graphene Oxide through Soft-lithographic Duplication

Xiawei Yun, Zhiyuan Xiong, Yaning He, and Xiaogong Wang*

Department of Chemistry Engineering, Laboratory of Advanced Materials (MOE),

Tsinghua University, Beijing 100084, P. R. China

Table S1. Elemental analysis results of GO and ODA-RGO

Sample	С	О	N	C/O ratio
	(wt %)	(wt %)	(wt %)	(atomic)
GO	66.52	33.21	0.27	2.67
ODA-RGO	90.48	6.36	3.16	18.99

Fig. S1. Survey scanned XPS spectra of GO and ODA-RGO.

Fig. S2. Confocal microscope system 3D images of the drop-coated film surface and the printed lotus-leaf-like surface of ODA-RGO. The roughness values of the drop-coated film surface and printed lotus-leaf-like surface of ODA-RGO on glass slides are $0.616 \mu m$ and $3.116 \mu m$.

Fig. S3. Advancing and receding water contact angles of the ODA-RGO lotus-leaf-like surface.

Fig. S4. Thermogravimetic analysis (TGA) of ODA-RGO.

Fig. S5. Typical SEM images of the printed lotus-leaf-like surface after the heating treatment at 150 °C for 24 h, (a) top-view, (b) side-view.

Fig. S6. Typical SEM images of the printed lotus-leaf-like surface after being immersed in the corrosive solution (pH = 0) for 12 h, (a) top-view, (b) section-view.