Binuclear and Tetranuclear Zn(II) Complexes With Thiosemicarbazones: Synthesis, X-ray Crystal Structures, ATPsensing, DNA-binding, Phosphatase activity and theoretical calculations

Piyali Adak,^a Bipinbihari Ghosh,^a Antonio Bauzá,^b Antonio Frontera,^b Steven R. Herron,^c Shyamal Kumar Chattopadhyay^{a*}

[†] Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711 103, India

‡ Department of Chemistry, University of the Balearic Islands, Carretera de Valldemossa km 7.5, 07122 Palma de Mallorca, IllesBalears, Spain

§ Department of Chemistry, Utah Valley University, 800W University Pkwy, Orem UT 84058, USA

Contents

1.	Figure S1: Mass spectra of H_2L^1	;
2.	Figure S2: NMR spectra of H_2L^1	;
3.	Figure S3: Extended NMR spectra of H_2L^1	ŀ
4.	Figure S4: Mass spectra of H_2L^2	ŀ
5.	Figure S5: NMR spectra of H_2L^2	,
6.	Figure S6: Extended NMR spectra of H_2L^2	,
7.	Figure S7: Mass spectra of complex 16	;
8.	Figure S8: NMRspectra of complex 1	;
9.	Figure S9: Extended NMR spectra of complex 1	,
10.	Figure S10: Mass spectra of complex 2	,
11.	Figure S11: NMR spectra of complex 2	;
12.	Figure S12: Extended NMR spectra of complex 2	;
13.	Figure S13: IR spectra of L^1 H ₂ and complex 1)
14.	Figure S14: IR spectra of $L^2 H_2$ and complex 2)
15. Figure S15: UV-vis absorption change of complexes 1 and 2 (1 x 10 ⁻⁵ M) in the presence of 24 equiv of different anions at a) Complex 1 at 343 nm and b) complex 2 at 260 nm 10		

16. Figure S16: a) Red bars: UV-visible absorbance of complex **1** (1 x 10⁻⁵) in presence of 8 equiv of ATP. Green bars: UV-visible spectrum of complex **1** (1 x 10⁻⁵) in presence of 8 equiv of ATP & 24 equiv

of other anions. b) Blue bars: UV-visible absorbance of complex $2 (1 \times 10^{-5})$ in presence of 8 equiv of ATP. Orange bars: UV-visible spectrum of complex $2 (1 \times 10^{-5})$ in presence of 8 equiv of ATP & 24 equiv of other anions		
17. Figure S17: Benesi-Hildeband plot for determination of Ka values of complexes 1 (a) and 2 (b) with ATP 11-12		
18. Figure S18 : Detection limit and calibration curves of a) complexes 1 and b) complex 2 with ATP		
19. Figure S19: Plots of $[DNA]/(\epsilon_a - \epsilon_f)$ vs. $[DNA]$ for the titration of DNA with the a) complex 1 b) complex 213		
20. Figure S20: Plot of a) I ₀ /I vs. [Complex 1] b) I ₀ /I vs. [Complex 1]13		
21 . Figure S21. Time dependent spectra of PNPP (10^{-4} M) and PNPP(10^{-4} M) in presence of $Zn(OAc)_2$		
solution (10 ⁻⁵ M)14		

2. Figure S2: NMR spectra of H_2L^1

4. Figure S4: Mass spectra of H_2L^2

6. Figure S6: Extended NMR spectra of H_2L^2

9. Figure S9: Extended NMR spectra of complex 1

10. Figure S10: Mass spectra of complex 2

12. Figure S12: Extended NMR spectra of complex 2

13. Figure S13: IR spectra of $L^1 H_2$ and complex 1

14. Figure S14: IR spectra of $L^2 H_2$ and complex 2

15. Figure S15:UV-vis absorption change of complexes **1** and **2** (1 x 10⁻⁵ M) in the presence of 24 equiv of different anions at a) Complex **1** at 343 nm and b) complex **2** at 260 nm.

16. Figure S16: a) Red bars: UV-visible absorbance of complex 1 (1 x 10⁻⁵) in presence of 8 equiv of ATP. Green bars: UV-visible spectrum of complex 1 (1 x 10⁻⁵) in presence of 8 equiv of ATP & 24 equiv of other anions. b) Blue bars: UV-visible absorbance of complex 2 (1 x 10⁻⁵) in presence of 8 equiv of ATP. Orange bars: UV-visible spectrum of complex 2 (1 x 10⁻⁵) in presence of 8 equiv of ATP & 24 equiv of other anions

(a)

17. Figure S17: Benesi-Hildeband plot for determination of Ka values of complexes 1(a) and 2(b) with ATP.

The Benesi-Hildeband equation used is : $1/\Delta A = 1/\Delta A_{max} + (1/K_b[C]) (1/\Delta Amax)$, where ΔA and ΔA_{max} are the change in absorbance at a given concentration of ATP, and when all the metal complex is fully bound to ATP respectively, [C] = [ATP].

The detection limit DL of **Complexes** for ATP was determined from the following equation: $DL = K \times Sb1/S$. Where K = 2 or 3 (we take 2 in this case); Sb1 is the standard deviation; S is the slope of the calibration curve.

18. Figure S18: Detection limit and calibration curves of a) complex **1** and b) complex **2** with ATP.

From the Absorbance vs. [ATP] graphs (S17), we get slope = 12005.49026, and Sb1 value is 0.04066 for complex **1**. Thus using the formula, we get the Detection Limit for Complex $1 = 6.7 \times 10^{-6}$. Similarly for complex **2** Detection Limit = 1.7×10^{-6} .

19. Figure S19: Plots of $[DNA]/(\epsilon_a - \epsilon_f)$ vs. [DNA] for the titration of DNA with the a) complex 1 b)complex 2.

20. Figure S20: Plot of a) I_0/I vs. [Complex 1] b) I_0/I vs. [Complex 2].

21. Figure S21. Time dependent spectra of PNPP (10⁻⁴ M) and PNPP(10⁻⁴ M) in presence of Zn(OAc)₂ solution (10⁻⁵ M).