Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020

Table of Contents

1. General remarks	S2
2. Experimental part	
3. X-ray crystallographic structure determination	S4
4. NMR spectra	
5. UV/vis and fluorescence spectra	S10
6. CV spectra	S20
7. Particle size distribution	S21
8. Calculations	S23
9. References	

1. General Remarks

All reagents and solvents were commercially available and were used without further purification unless otherwise noted. For thin layer chromatography Silica gel 60 F254 plates from Merck were used and examined under UV-light irradiation (254 nm and 365 nm). Flash column chromatography was performed on silica gel (particle size: 200-300 mesh). IR-Spectra were recorded as KBr-pellets on a Bruker VERTEX 80V spectrometer. NMR spectra were taken on a Bruker AVANCE III HD (600MHz). Chemical shifts (δ) are reported in parts per million (ppm) relative to traces of CHCl₃ in the corresponding deuterated solvent. HRMS experiments were carried out on a Bruke Fourier Transform SolariX XR. Absorption spectra were recorded on a shimadzu UV2600. Emission spectra and absolute quantum yields were measured on FluoroMax-4 spectrometer equipped with an integral sphere. The particle distribution was measured on a Malvern Zetasizer Nano ZS. Electrochemical data were dichloromethane or tetrahydrofuran solution of tetrabutylammonium obtained in hexafluorophosphate (0.1 M) and ferrocene was used as an internal standard. Cyclic voltammagrams were obtained using a glassy carbon working electrode, a platinum counter electrode, and a Ag reference electrode tested on CHI660E station.

Acridone,^{S1} 4-bromo-*N*,*N*-bis(4-methoxyphenyl)aniline^{S2} and 4'-bromo-*N*,*N*-bis(4-methoxyphenyl)-[1,1'-biphenyl]-4-amine^{S3} were prepared according to the reported methods.

2. Experimental part

Genaral Procedure (GP) for the cross coupling reactions of acridone and bromide.

An 8 or 120 mL screw capped glass vial was charged with acridone 1, bromide, CuI, 2,2,6,6-tetramethylheptane-3,5-dione, K_2CO_3 and dry DMF. The mixture was heated at 150 °C for 48 hours. After cooling down to room temperature, the mixture was diluted with dichloromethane (150 mL) and washed with water (6×200 mL) and dried over Na₂SO₄. The solvent was removed by a rotatory evaporation and the crude product was purified by silica gel column chromatography to give the product **2**.

According to **GP**, an 8 mL glass vial, acridone (390 mg, 2 mmol)), 4-bromoanisole (561 mg, 3 mmol), CuI (39 mg, 0.2 mmol), 2,2,6,6-tetramethylheptane-3,5-dione (73 mg, 0.4 mmol), K₂CO₃ (414 mg, 3 mmol) and dry DMF (3 mL), after workup, silica gel column (dichloromethane), the product **2a** was obtained as light yellow solid (463 g, 77 %). m.p. 232 °C. ¹H NMR (600 MHz, CD₂Cl₂) δ (ppm) = 8.50 (d, *J* = 8.0 Hz, 2H), 7.52 (ddd, *J* = 8.5, 6.9, 1.6 Hz, 2H), 7.29-7.25 (m, 4H), 7.20 (d, *J* = 8.8 Hz, 2H), 6.85 (d, *J* = 8.6 Hz, 2H), 3.94 (s, 3H). ¹³C NMR (150 MHz, CD₂Cl₂) δ (ppm) = 178.1, 160.7, 144.0, 133.5, 131.8, 131.4, 127.3, 122.3, 121.7, 117.5, 116.6, 56.1. IR (KBr) \tilde{v} (cm⁻¹) = 3104, 3064, 3050, 3037, 3002, 2960, 2937, 2836, 1631, 1596, 1512, 1490, 1457, 1361, 1348, 1294, 1270, 1249, 1182, 1162, 1106, 1029, 937, 839, 763, 756, 675, 621, 549, 530. HRMS(ESI) (*m*/*z*) : [M+H]⁺ calcd. for C₂₀H₁₆NO₂, 302.11755; found, 302.11740.

According to **GP**, a 120 mL glass vial, acridone (976 mg, 5 mmol)), 4-bromo-*N*,*N*-bis(4-methoxyphenyl)aniline (2.11 g, 5.5 mmol), CuI (95 mg, 0.5 mmol), 2,2,6,6-tetramethylheptane-3,5-dione (184 mg, 1 mmol), K₂CO₃ (1.04 g, 7.5 mmol) and dry DMF (15 mL), after workup, silica gel column (dichloromethane), the product **2b** was obtained as light yellow solid (2.06 g, 83 %). m.p. 253 °C. ¹H NMR (600 MHz, CD₂Cl₂) δ (ppm) = 8.49 (dd, *J* = 8.0, 1.7 Hz, 2H), 7.56 (ddd, *J* = 8.6, 6.9, 1.7 Hz, 2H), 7.27 (ddd, *J* = 7.9, 6.9, 1.0 Hz, 2H), 7.25-7.21 (m, 4H), 7.12-7.08 (m, 4H), 6.99 (dd, *J* = 8.7, 0.9 Hz, 2H), 6.95-6.90 (m, 4H), 3.81 (s, 6H); ¹³C NMR (150 MHz, CD₂Cl₂) δ (ppm) = 178.1, 157.2, 150.1, 144.1, 140.4, 133.5, 130.5, 130.1, 127.9, 127.2, 122.3, 121.7, 120.5, 117.6, 115.3, 55.9; IR (KBr) \tilde{v} (cm⁻¹) = 3060, 3043, 2995, 2952, 2933, 2906, 2831, 1631, 1598, 1504, 1483, 1457, 1359, 1303, 1290, 1268, 1241, 1176, 1159, 1103, 1031, 935, 825, 752, 675, 619, 603, 574, 559, 530; HRMS(ESI) (*m*/*z*) : [M+H]⁺ calcd. for C₃₃H₂₇N₂O₃, 499.20162; found, 499.20205.

According to **GP**, an 8 mL glass vial, acridone (390 mg, 2 mmol)), 4'-bromo-*N*,*N*-bis(4-methoxyphenyl)-[1,1'-biphenyl]-4-amine (1.01 g, 2.2 mmol), CuI (39 mg, 0.2 mmol), 2,2,6,6-tetramethylheptane-3,5-dione (73 mg, 0.4 mmol), K₂CO₃ (1.04 g, 7.5 mmol) and dry DMF (3 mL), after workup, silica gel column (dichloromethane), the product **2b** was obtained as light yellow solid (900 mg, 78 %). m.p. 251 °C. ¹H NMR (600 MHz, CD₂Cl₂) δ (ppm) = 8.51 (d, *J* = 8.0 Hz, 2H), 7.87 (d, *J* = 7.1 Hz, 2H), 7.56-7.51 (m, 4H), 7.39 (d, *J* = 7.6 Hz, 2H), 7.28 (t, *J* = 7.4 Hz, 2H), 7.12 (d, *J* = 7.9 Hz, 4H), 7.02 (d, *J* = 7.8 Hz, 2H), 6.91-6.88 (m, 6H), 3.81 (s, 6H). ¹³C NMR (150 MHz, CD₂Cl₂) δ (ppm) = 178.1, 156.8, 149.4, 143.7, 142.5, 140.9, 137.5, 133.6, 131.3, 130.6, 129.1, 128.0, 127.4, 127.3, 122.3, 121.8, 120.4, 117.5, 115.1, 55.9. IR (KBr) \tilde{v} (cm⁻¹) = 3070, 3035, 3002, 2958, 2935, 2910, 2833, 1631, 1600, 1506, 1492, 1459, 1357, 1321, 1301, 1276, 1240, 1176, 1105, 1029, 935, 833, 821, 756, 719, 675, 576, 534. HRMS(ESI) (*m*/*z*) : [M+H]⁺ calcd. for C₃₉H₃₁N₂O₃, 575.23292; found, 575.23388.

3. X-ray crystallographic structure determination

v	· · · · ·
Empirical formula	$C_{20}H_{15}NO_2$
Formula weight	301.33
Temperature/K	283.36
Crystal system	monoclinic
Space group	$P2_1/n$
$a/\mathrm{\AA}$	9.4255(10)
b/Å	12.9799(13)
$c/{ m \AA}$	24.692(2)
<i>α</i> /°	90
β/°	92.779(3)
22/9	90
Y/ Valuera (Å 3	3017.3(5)
v olume/A ³	8
Z	1.327
<i>pcuic</i> . g/cm ⁻	0.086
$\mu/11111 = E(000)$	1264
F(000)	Mo K_{α} ($\lambda = 0.71076$)
Radiation	4.556 to 54
20 range for data collection/	$-11 \le h \le 12, -16 \le k \le 16, -31 \le l \le 30$
Index ranges	44195
Reflections collected	6580 [$R_{int} = 0.1091$, $R_{sigma} = 0.1014$]
Independent reflections	6580/0/417
Data/restraints/parameters	1.203
Goodness-ot-fit on F^2	$R_1 = 0.1289, wR_2 = 0.1506$
Final R indexes $[1 \ge 2\sigma(1)]$	$R_1 = 0.2532, wR_2 = 0.1860$
Final R indexes [all data]	0.19/-0.17
Largest diff. peak/hole / e Å ⁻³	

 Table S1. Crystal data and structure refinement for 2a (CCDC 1972073)

Empirical formula	$C_{33}H_{26}N_2O_3$					
Formula weight	498.56					
Temperature/K	293.3					
Crystal system	monoclinic					
Space group	$P2_1/n$					
$a/\mathrm{\AA}$	11.3406(5)					
$b/{ m \AA}$	9.8838(5)					
$c/{ m \AA}$	23.6490(12)					
<i>a</i> /°	90					
β/°	100.0920(10)					
1/ /º	90					
V_{0} Volume/ λ^{3}	2609.8(2)					
Z	4					
$\sum_{\alpha,\alpha,\beta} \frac{1}{\alpha} \sum_{\alpha,\beta} \sum_{\alpha,\beta} \frac{1}{\alpha} \sum_{\alpha,\beta} \sum_$	1.269					
u/mm ⁻¹	0.082					
μ min $F(000)$	1048.0					
Radiation	Mo K_{α} ($\lambda = 0.71076$)					
2A range for data collection/°	4.314 to 57.182					
Index ranges	$-15 \le h \le 15, -13 \le k \le 13, -30 \le l \le 31$					
Reflections collected	42064					
Independent reflections	$6642 \ [R_{int} = 0.0706, R_{sigma} = 0.0782]$					
Data/restraints/narameters	6642/0/345					
$Coodness of fit on F^2$	1.024					
Final P indexes $[1 > 2\sigma(I)]$	$R_1 = 0.0748, wR_2 = 0.1239$					
Final R indexes $[1/-20(1)]$	$R_1 = 0.1695, wR_2 = 0.1516$					
Final K indexes [an data] Largest diff, peak/holo / $a^{\frac{1}{2}-3}$	0.21/-0.20					
Largest unit. peak/note / e A ³						

Table S2. Crystal data and structure refinement for 2b (CCDC 1972074)

Empirical formula	$C_{39}H_{30}N_2O_3$
Formula weight	574.68
Temperature/K	293.3
Crystal system	triclinic
Space group	Pī
$a/{ m \AA}$	9.8465(8)
$b/{ m \AA}$	12.7204(10)
$c/{ m \AA}$	13.4275(10)
<i>a</i> /°	69.672(2)
<i>β</i> /°	71.642(2)
1/0	77.107(2)
$V_{\rm olume}/\lambda^3$	1484.5(2)
Z	2
$a_{calc} = a/cm^3$	1.281
u/mm ⁻¹	0.078
μ min F(000)	604.0
Radiation	Mo K_{α} ($\lambda = 0.71076$)
2θ range for data collection/°	4.394 to 52.896
Index ranges	$-12 \le h \le 12, -15 \le k \le 15, -16 \le l \le 16$
Reflections collected	35328
Independent reflections	$6114 [R_{int} = 0.0989, R_{sigma} = 0.1094]$
Data/restraints/parameters	6114/0/399
$Goodness_of_fit on F^2$	1.060
Final R indexes $[1 \ge -2\sigma(I)]$	$R_1 = 0.0852, wR_2 = 0.1120$
Final R indexes [$1 - 20$ (1)] Final R indexes [all data]	$R_1 = 0.1916, wR_2 = 0.1365$
I argest diff peak/hole / $e^{\lambda^{-3}}$	0.19/-0.18
Largest unit. peak/noie / e A	

 Table S3. Crystal data and structure refinement for 2c (CCDC 1972075)

4. NMR Spectra

88500112556677788850011255550	94
8877777777777777777777777777	ς.
	1

Figure S1. ¹H NMR spectrum (CD₂Cl₂, 600 MHz) of **2a**.

Figure S2. ¹³C NMR spectrum (CD_2Cl_2 , 150 MHz) of 2a.

Figure S4. 13 C NMR spectrum (CD₂Cl₂, 150 MHz) of **2b**.

Figure S5. ¹H NMR spectrum (CD₂Cl₂, 600 MHz) of 2c.

Figure S6. 13 C NMR spectrum (CD₂Cl₂, 150 MHz) of **2c**.

5. UV/vis and fluorescence spectra

Figure S7. UV/vis absorption spectra of compound 2a measured in different solvents at room temperature.

Figure S8. UV/vis absorption spectra of compound 2b measured in different solvents at room temperature.

Figure S9. UV/vis absorption spectra of compound 2c measured in different solvents at room temperature.

Figure S10. UV/vis absorption spectra of compound 2a measured in THF/water with different water fractions at room temperature, concentration: 10 μ M.

Figure S11. UV/vis absorption spectra of compound 2b measured in THF/water with different water fractions at room temperature, concentration: $10 \ \mu M$.

Figure S12. UV/vis absorption spectra of compound 2c measured in THF/water with different water fractions at room temperature, concentration: 10 μ M.

Figure S13. Fluorescence spectra of compound 2a measured in different solvents at room temperature, concentration: 10 μ M.

		-	-	_
cyclohexane	toluene	THF	dichloromethane	acetonitrile

Figure S14. Photographs of compound 2a in different solvents under 365 nm UV light, concentration: 10 μ M.

Figure S15. Fluorescence spectra of compound 2b measured in different solvents at room temperature, concentration: 10 μ M.

Figure S16. Photographs of compound 2b in different solvents under 365 nm UV light, concentration: $10 \ \mu$ M.

Figure S17. Fluorescence spectra of compound 2c measured in different solvents at room temperature, concentration: 10 μ M.

Figure S18. Photographs of compound 2c in different solvents under 365 nm UV light, concentration: 10 μ M.

Figure S19. Fluorescence emission spectra of compound 2a measured in THF/water with different water fractions at room temperature, concentration: 10 μ M.

Figure S20. Photographs of compound 2a in THF/water with different water fractions under 365 nm UV light, concentration: $10 \ \mu M$.

Figure S21. Photographs of compound 2b in THF/water with different water fractions under 365 nm UV light, concentration: $10 \ \mu$ M.

Figure S22. Fluorescence emission spectra of compound 2c measured in THF/water with different water fractions at room temperature, concentration: 10 μ M.

Figure S23. Photographs of compound 2c in THF/water with different water fractions under 365 nm UV light, concentration: 10 μ M.

LE			ICT								
compd	sol	$\lambda_{em}/\lambda_{ex}$	Φ_F	τ	k _r	k _{nr}	λ_{em}	Φ_F	τ	k _r	k _{nr}
compu.	501.	(nm)	(%)	(ns)	$(\times 10^7 \text{s}^{-1})$	$(\times 10^7 \text{s}^{-1})$	(nm)	(%)	(ns)	$(\times 10^7 \text{s}^{-1})$	$(\times 10^7 \text{s}^{-1})$
2a	СНХ	391/367	4.4	0.014	326	7080	-	-	-	-	-
	TOL	399/373	8.2	0.013	656	7340	-	-	-	-	-
	THF	399/372	10	1.1	9.1	82	-	-	-	-	-
	DCM	406/377	35	1.8	19	36	-	-	-	-	-
	MeCN	405/375	23	2.0	11	38	-	-	-	-	-
2b	СНХ	397/369	2.7	0.021	1270	45900	578	2.2	0.84	2.6	116
	TOL	422/374	3.6	4.6	0.8	21	636	1.3	0.021	61	4700
	THF	420/374	1.6	5.6	0.3	18	480	1.9	1.7	1.1	58
	DCM	426/379	1.7	3.9	0.4	25	571	3.3	0.69	4.8	140
	MeCN	426/378	3.8	3.7	1.0	26	652	1.4	1.5	0.9	66
2c	CHXa	414/368	3.5	0.011	320	8770	-	-	-	-	-
	TOL ^a	435/373	32	2.3	14	29	-	-	-	-	-
	THF ^a	473/372	10	2.9	3.4	31	-	-	-	-	-
	DCM	407/376	1.7	4.7	0.4	21	627	1.2	4.4	0.3	22
	MeCN ^b	426/378	3.8	4.3	0.9	22	-	-	-	-	-

Table S4 Summary of photoluminescence of 2a-2c in different solvents at the concentration of 10 μ M.

^a The fluorescence at the ICT and LE state are overlapped, thus only the peaks at the emission maxima are listed. ^bNo fluorescence at the ICT state was observed. CHX: cyclohexane; TOL: toluene; THF: tetrahydrofuran; DCM: dichloromethane; MeCN: acetonitrile.

compd	$\lambda_{em}/\lambda_{ex}$ (nm)	Φ _F (%)	τ (ns)	k_r (×10 ⁷ s ⁻¹)	k_{nr} (×10 ⁷ s ⁻¹)
2a	464/365	13	3.9	3.3	22.3
2b	457/365	17	3.2	5.3	25.9
2c	496/365ª	2.1	37.9	0.06	2.6

Table S5Summary of photoluminescence of **2a-2c** in solid state

^a The fluorescence of 2c has a broad emission in the range 458-504 nm, thus only the peak with the highest intensity is listed.

compd	water	$\lambda_{em}/\lambda_{ex}$	$arPsi_F$	τ	k_r	k _{nr}
I.	content	(nm)	(%)	(ns)	$(\times 10^7 \text{ s}^{-1})$	$(\times 10^7 \text{s}^{-1})$
2a	0	399/372	10	1.1	9.1	81.8
	0.99	431/372	7.3	1.3	5.7	72.4
2b	0 ^a	420/374	1.6	5.6	0.3	17.6
	0.85	433/374	21	3.4	6.1	23.1
	0.95	525/374	1.9	89	0.02	1.1
2c	0 ^b	473/372	10	2.9	3.4	31
	0.9	538/372	1.5	31.5	0.05	3.1

Table S6 Summary of photoluminescence of **2a-2c** in THF/water at the concentration of 10 μ M in solution and aggregation states.

^a Only the fluorescence of the LE state is listed. ^b The fluorescence at the ICT and LE state are overlapped, thus only the peaks at the emission maxima are listed.

6. CV spectra

Figure S24. Cyclic voltammograms of compound **2a-2c** measured in 0.1 M Bu₄NClO₄ in dichloromethane for oxidation and in THF for reduction at room temperature. The scan speed was 100 mV/s, and ferrocene/ferrocenium (Fc/Fc⁺) was used as internal reference.

7. Particle size distribution

Figure S25. Particle size distribution of compound 2a in 99% water in THF, concentration: 10 μ M.

Figure S26. Particle size distribution of compound 2b in 85% water in THF, concentration: $10 \ \mu M$.

Figure S27. Particle size distribution of compound 2b in 95% water in THF, concentration: $10 \ \mu M$.

Figure S28. Particle size distribution of compound 2c in 90% water in THF, concentration: 10 μ M.

8. Calculations

Figure S29. UV/Vis absorption spectrum of **2a** and TD-DFT calculated oscillator strength (blue column) in dichloromethane at APFD/6-311G+(2d,p) level.

Figure S30. UV/Vis absorption spectrum of **2b** and TD-DFT calculated oscillator strength (blue column) in dichloromethane at APFD/6-311G+(2d,p) level.

Figure S31. UV/Vis absorption spectrum of **2c** and TD-DFT calculated oscillator strength (blue column) in dichloromethane at APFD/6-311G+(2d,p) level.

	transitions	contributions	Energy	Wavelength	Oscillator	<u>é</u>
	transitions	contributions	eV	nm	strength	*****
Excited 1	HOMO→LUMO	98.39%	3.1714	390.94	0.2066	LUMO+2
Excited 2	HOMO-2→LUMO	96.54%	3.5927	345.10	0	LUMO+1
Excited 3	HOMO-1→LUMO	98.59%	3.9362	314.99	0	بغ مع مع
Excited 4	HOMO-5→LUMO HOMO-3→LUMO HOMO→LUMO+1 HOMO→LUMO+2	12.72% 3.56% 79.25% 2.49%	4.1836	296.36	0.0368	номо
Excited 5	HOMO-5→LUMO HOMO-3→LUMO HOMO→LUMO+1 HOMO→LUMO+2	10.00% 5.31% 10.85% 72.91%	4.3952	282.09	0.0155	HOMO-1 HOMO-2 HOMO-5

Table S7. TD-DFT calculated electron transitions of **2a** in dichloromethane at APFD /6-311G+(2d,p) level and the corresponding contributions.

Table S8.	TD-DFT	calculated	electron	transitions	of 21) in	dichloromethane	at	APFD	/6-
311G+(2d,p) level and	d the corres	ponding	contribution	1S.					

	transitions	aantributiona	Energy	Wavelength	Oscillator	
	uansitions	contributions	eV	nm	strength	100 CD
Excited 1	HOMO→LUMO	99.75%	2.3690	523.37	0.0007	LUMO+3
Excited 2	HOMO→LUMO+1 HOMO→LUMO+3	90.74% 6.32%	3.1183	397.61	0.0300	LUMO+2
Excited 3	HOMO-1→LUMO HOMO→LUMO+2	82.39% 15.32%	3.1956	387.99	0.4523	LUMO
Excited 4	HOMO-1→LUMO HOMO→LUMO+2	15.46% 82.19%	3.3150	374.01	0.1431	номо
Excited 5	HOMO-4→LUMO HOMO-3→LUMO	6.05% 91.44%	3.5032	353.92	0	HOMO-1 HOMO-3 HOMO-4

			Energy	Wavelength	Oscillator	
	transitions	contributions	eV	nm	strength	
Excited 1	HOMO→LUMO	99.79%	2.4349	509.19	0.0001	LUMO+3
Excited 2	HOMO→LUMO+1	96.44%	2.9743	416.85	0.8064	LUMO+2
Excited 3	HOMO→LUMO+2 HOMO→LUMO+3	10.63% 87.75%	3.2059	386.74	0.0290	LUMO
Excited 4	HOMO-1→LUMO	96.89%	3.2226	384.73	0.1483	номо
Excited 5	HOMO-4→LUMO	97.19%	3.5001	354.23	0	HOMO-1

Table S9. TD-DFT calculated electron transitions of **2c** in dichloromethane at APFD /6-311G+(2d,p) level and the corresponding contributions.

Cartesian coordinates for theoretically optimized structures of 2a-2c

2a opt B3LYP/6-31G(d)

HF = -976.4006948 hartree

_

С	1.03117322	-3.64598290	0.01987237
С	0.33858264	-2.44542508	0.04866693
С	1.03861455	-1.21955241	0.01533471
С	2.45175185	-1.24483194	-0.04770624
С	3.12575666	-2.47781091	-0.07612261
С	2.43292936	-3.67478426	-0.04310324
С	2.45162277	1.24497350	-0.04782586
С	1.03849414	1.21954993	0.01536916
С	0.33835358	2.44536159	0.04893149
Н	-0.74289174	2.44843152	0.09810538
С	1.03082223	3.64598321	0.02007496
С	2.43256637	3.67492525	-0.04317909
С	3.12550298	2.47802261	-0.07632288
Н	0.47041689	-4.57606851	0.04712089
Н	-0.74267237	-2.44860165	0.09762841
Н	4.20895428	-2.44074319	-0.12465690
Н	2.96220404	-4.62198801	-0.06508103
Н	0.46998691	4.57601546	0.04752610
Н	2.96173776	4.62218401	-0.06526661
Н	4.20869956	2.44105602	-0.12496081
С	-1.08593471	-0.00009248	0.10806462
С	-1.73622820	-0.00017420	1.34883708
С	-1.84146818	-0.00004932	-1.06301382
С	-3.12272668	-0.00020335	1.41229789
Н	-1.14588170	-0.00023626	2.25961842
С	-3.23726738	-0.00005654	-1.01124520
Н	-1.33465550	-0.00000560	-2.02289937
С	-3.88344580	-0.00011928	0.23176827
Н	-3.64315599	-0.00027746	2.36390287
Н	-3.80221557	-0.00007500	-1.93522462
С	-6.06185572	0.00001420	-0.75247836

Н	-5.89817109 -0.89427998 -1.36652166
Н	-7.08840513 0.00017255 -0.38459636
Н	-5.89800266 0.89421773 -1.36661934
Ο	-5.23368710 -0.00001663 0.40237776
С	3.23956458 0.00011384 -0.08430074
0	4.47170940 0.00017156 -0.14086147
Ν	0.35271775 -0.00002997 0.04375395

2b opt B3LYP/6-31G(d)

HF = -1608.3871845 hartree

С	-3.91872108	2.39479425	2.74170961	
С	-3.24481528	1.59246638	1.83430675	
С	-3.96471696	0.77438843	0.93588489	
С	-5.37878198	0.79298419	0.98382447	
С	-6.03367688	1.61728145	1.91506378	
С	-5.32133630	2.41589203	2.79165263	
С	-6.18700837	-0.03794263	0.07406117	
С	-5.41776975	-0.87045567	-0.86729886	
С	-4.00290593	-0.85400692	-0.87695786	
С	-3.32121172	-1.67366119	-1.80317023	
Н	-2.23913564	-1.67495302	-1.82660698	
С	-4.03257875	-2.47568911	-2.68180353	
С	-5.43610527	-2.49462582	-2.67474757	
С	-6.11117975	-1.69439446	-1.77062449	
Н	-3.34280058	3.01492747	3.42300987	
Н	-2.16266846	1.59164742	1.81394910	
Н	-7.11834212	1.59346982	1.90944156	
Н	-5.83592154	3.04893945	3.50744378	
Н	-3.48566098	-3.09741695	-3.38513193	
Н	-5.98018457	-3.12754525	-3.36848630	
Н	-7.19468255	-1.66907202	-1.72101778	
С	-1.85673311	-0.03982717	-0.01495710	
С	-1.13196640	-0.93361776	0.77763142	

С	-1.16644145	0.85471360	-0.83759756
С	0.25873528	-0.93187082	0.75635100
Н	-1.66413920	-1.62415147	1.42466994
С	0.22355947	0.85464681	-0.87428045
Н	-1.72608843	1.54414738	-1.46225362
С	0.96473013	-0.03828537	-0.07400830
Н	0.80635838	-1.62198819	1.38740868
Н	0.74389859	1.54499611	-1.52780717
Ν	2.37069884	-0.03893320	-0.10543026
С	3.09784325	1.15485157	-0.39871596
С	4.12255930	1.14360530	-1.35975442
С	2.82442621	2.34994131	0.27379045
С	4.84993878	2.29281800	-1.63291170
Н	4.34684012	0.22221760	-1.88713972
С	3.53626200	3.51706897	-0.01142964
Н	2.04182714	2.37191731	1.02534920
С	4.55987747	3.49249312	-0.96555076
Н	5.64336828	2.29038162	-2.37282957
Н	3.29413065	4.42636009	0.52540239
С	3.10799411	-1.22984884	0.17382240
С	4.16687555	-1.21365265	1.08592518
С	2.80435341	-2.43510829	-0.48266761
С	4.91669305	-2.36377049	1.34129070
Н	4.41410616	-0.28883688	1.59690190
С	3.52951225	-3.58760966	-0.21799212
Н	1.99164434	-2.46140747	-1.20127827
С	4.59616762	-3.56199988	0.69357427
Н	5.73399623	-2.31308068	2.05053139
Н	3.29932014	-4.52137835	-0.72010219
0	-7.42049111	-0.03656747	0.09905788
Ν	-3.29700553	-0.03998844	0.01532852
С	5.07682157	5.80634551	-0.67114223
H	5.78694216	6.51585710	-1.09793644
С	6.33913910	-4.77886857	1.78373411
-	0.00/10/10		

_

Н	6.71194728	-5.80389552	1.77071334
Н	5.24049289	5.74036695	0.41218825
Н	4.05543698	6.16218598	-0.85784097
Н	6.02161746	-4.52381888	2.80294507
Н	7.14455036	-4.09839360	1.47878189
0	5.32597840	4.56691672	-1.31543764
0	5.25201977	-4.74576903	0.87242125

2c opt B3LYP/6-31G(d)

HF = -1839.4509874 hartree

С	-6.25461854	0.79767828	-3.55739511	
С	-5.56167442	0.53477352	-2.38591535	
С	-6.26315380	0.26716023	-1.18994700	
С	-7.67771507	0.27292616	-1.21461854	
С	-8.35189413	0.54302948	-2.41790623	
С	-7.65786500	0.80471149	-3.58564306	
С	-7.67775158	-0.27295093	1.21453096	
С	-6.26318946	-0.26715349	1.18990839	
С	-5.56174592	-0.53474872	2.38590198	
Н	-4.47933851	-0.53452802	2.38909270	
С	-6.25472485	-0.79767105	3.55735687	
С	-7.65797242	-0.80473845	3.58555556	
С	-8.35196663	-0.54307071	2.41779490	
Н	-5.69293113	1.00059833	-4.46489450	
Н	-4.47926689	0.53457912	-2.38906745	
Н	-9.43619335	0.53517620	-2.38197996	
Н	-8.18730048	1.01213980	-4.51003950	
Н	-5.69306464	-1.00057775	4.46487613	
Н	-8.18743537	-1.01218071	4.50993316	
Н	-9.43626479	-0.53524099	2.38183128	
С	-4.13669947	0.00000587	0.00001447	
С	-3.43434122	1.17904848	0.26076838	

C	-3.43434454	-1.17904442	-0.26071817
С	-2.04197520	1.17499776	0.26397164
Н	-3.98419299	2.09078447	0.47244227
С	-2.04197958	-1.17500505	-0.26387581
Н	-3.98419905	-2.09077461	-0.47241041
С	-1.31406947	-0.00000656	0.00005991
Н	-1.51009145	2.09105865	0.50013771
Н	-1.51009539	-2.09107035	-0.50002313
С	0.16642870	-0.00001955	0.00008449
С	0.90015844	1.11176524	-0.44894590
С	0.90013416	-1.11180872	0.44914150
С	2.28892954	1.11585189	-0.45843424
Н	0.37432791	1.97810510	-0.83956974
С	2.28890506	-1.11591162	0.45865621
Н	0.37429441	-1.97814449	0.83976042
С	3.01494639	-0.00003882	0.00010899
Н	2.82152584	1.98139375	-0.83585240
Н	2.82148221	-1.98145410	0.83610046
Ν	4.42284127	-0.00003589	0.00017181
С	5.15127673	-1.21582393	-0.16523008
С	6.20431087	-1.53818569	0.69608288
С	4.84242095	-2.10425269	-1.21001673
С	6.94304671	-2.71085600	0.52562353
Н	6.45483259	-0.86067912	1.50583804
С	5.55698882	-3.28222169	-1.37269944
Н	4.03338854	-1.86424683	-1.89215750
С	6.61741553	-3.59505597	-0.50886114
Н	7.75503369	-2.92582521	1.20988114
Н	5.32230157	-3.97242992	-2.17625242
С	5.15122834	1.21582412	0.16540646
С	6.20396495	1.53830951	-0.69621944
С	4.84258183	2.10417068	1.21031271
С	6.94267369	2.71101526	-0.52589933
Н	6.45426685	0.86085703	-1.50608897

_

С	5.55711683	3.28218119	1.37287060	
Н	4.03374889	1.86407239	1.89265491	
С	6.61728667	3.59510916	0.50876449	
Н	7.75440868	2.92612990	-1.21040312	
Н	5.32256568	3.97235106	2.17649541	
Ν	-5.57754964	0.00001253	-0.00000674	
С	8.33963109	5.14048641	-0.08439871	
Н	8.70461506	6.09744729	0.29113208	
Н	9.15395428	4.40523521	-0.04865172	
Н	8.01390947	5.26261762	-1.12546673	
С	8.33982212	-5.14046953	0.08410473	
Н	8.01429768	-5.26212270	1.12529652	
Н	8.70445954	-6.09767314	-0.29115028	
Н	9.15433851	-4.40545707	0.04791654	
0	7.26282016	-4.77190670	-0.76238717	
Ο	7.26272464	4.77194433	0.76221932	
С	-8.46641656	-0.00001880	-0.00005701	
Ο	-9.69997429	-0.00002905	-0.00007796	

9. References

[S1] C. F. H. Allen, G. H. W. McKee, Org. Synth. 1939, 19, 6.

[S2] Ł. Skórka, P. Kurzep, G. Wiosna-Sałyga, B. Łuszczyńska, I. Wielgus, Z. Wróbel, J. Ulański, I. Kulszewicz-Bajer, Synth. Met. 2017, 228, 1.

[S3] B. Xu, H. Tian, D. Bi, E. Gabrielsson, E. M. J. Johansson, G. Boschloo, A. Hagfeldt, L. Sun, *J. Mater. Chem. A* **2013**, *1*, 14467.