Supporting Information for

A Flexible Polyelectrolyte-Based Gel Polymer Electrolyte for

High-Performance All-Solid-State Supercapacitor Application

Chaojing Yan,^a Mengyuan Jin,^a Xinxin Pan,^a Longli Ma,^a and Xiaohua Ma*^a

^a Department of Materials Science, Fudan University, Shanghai 200433, China E-mail: <u>xhma@fudan.edu.cn</u>

Table S1. Room temperature ionic conductivity and mechanical properties of GPE film with different mass ratios ($C_3(Br)DMAEMA$: PEGMA) and different electrolyte solution concentrations.

The mass ratio of GPE	Li ₂ SO ₄ /H ₂ O	Conductivity	Mechanical properties	
components	solution	(mS cm ⁻¹)		
(C ₃ (Br)DMAEMA :	concentration			
PEGMA)	(mol L ⁻¹)			
9:1	0.5	45.2	Stretchable	
	1	56.3	Stretchable	
	1.5	56.6	Hard	
	2	55.4	Hard	
8:2	0.5	58.9	Stretchable	
	1	66.8	Stretchable	
	1.5	66.2	Stretchable	
	2	59.4	Hard	

7:3	0.5	38.4	A little brittle	
	1	45.1	A little brittle	
	1.5	44.7	Too brittle	
	2	40.1	Too brittle	

 Table S2. The ionic conductivity of hydrogel polymer electrolytes already reported

 and PGPE reported in this work are compared.¹⁻⁸

Sample	Conductivity	Temperature	Ref.
	$(mS cm^{-1})$		
P(NVP-co-DMDAAC)/PVA+KOH	36.6	25 °C	1
PVA-H ₃ PO ₄	4.1	30 °C	2
PVA-H ₃ PO ₄	34	30 °C	3
Chitosan+poly(diallyldimethylammonium	24	30 °C	4
chloride)+KOH			
B-PVA+GO+KCl	47.5	RT	5
Corn starch+citric acid	2.30 ± 0.07	23 °C	6
Carboxylated chitosan+HCl	86.9	RT	7
IL/DMSO+LiAc	39.8 ± 2.8	25 °C	8
This work	66.8	25 °C	

Figure S1. (a) CV curves of PDPA supercapacitor at different scan rates from 10 to 200 mV s⁻¹, (b) GCD curves at different current densities from 0.5 to 10 A g⁻¹ in the voltage range of 0-1.2 V.

Figure S2. Curve of UV curing conversion rate at different irradiation time.

The UV curing conversion rate of the monomers (C₃(Br)DMAEMA : PEGMA= 8:2) was estimated from the concentration of carbon-carbon double bonds.⁹ By considering the absorption region of infrared spectroscopy, measured by Fourier transform infrared spectrometer, where the absorption peak for C=C and C=O are in the 1637 cm⁻¹ and 1720 cm⁻¹ regions, respectively. The conversion rate (C) can be calculated as follows:

$$C(\%) = \frac{(A_0^{1637}/A_0^{1720}) - (A_t^{1637}/A_t^{1720})}{A_0^{1637}/A_0^{1720}}$$

References

- J. Wang, M. D. Deng, Y. H. Xiao, W. T. Hao and C. F. Zhu, *New Journal Of Chemistry*, 2019, 43, 4815-4822.
- 2. Y. N. Sudhakar, M. Selvakumar and D. K. Bhat, *Materials for Renewable And Sustainable Energy*, 2015, **4**.
- 3. C. Zhao, C. Wang, Z. Yue, K. Shu and G. G. Wallace, ACS applied materials & interfaces,

2013, 5, 9008-9014.

- 4. Y. A. Wei, M. Wang, N. N. Xu, L. W. Peng, J. F. Mao, Q. J. Gong and J. L. Qiao, ACS applied materials & interfaces, 2018, 10, 29593-29598.
- 5. H. Peng, Y. Y. Lv, G. G. Wei, J. Z. Zhou, X. J. Gao, K. J. Sun, G. F. Ma and Z. Q. Lei, *Journal Of Power Sources*, 2019, **431**, 210-219.
- A. Willfahrt, E. Steiner, J. Hotzel and X. Crispin, *Appl. Phys. A-Mater. Sci. Process.*, 2019, 125, 10.
- H. Z. Yang, Y. Liu, L. B. Kong, L. Kang and F. Ran, *Journal Of Power Sources*, 2019, 426, 47-54.
- 8. D. Kasprzak, I. Stepniak and M. Galinski, J. Solid State Electrochem., 2018, 22, 3035-3047.
- 9. X. Y. Li, K. H. Hu and Z. G. Lu, J. Eur. Ceram. Soc., 2019, 39, 2503-2509.