Supporting information

Materials and instrumentation

All reagents were purchased from Sigma-Aldrich and Merck chemical companies and used without further purification. FT-IR spectra were recorded on a Bruker Tensor 27 FT-IR spectrophotometer using KBr pellets over the range of 4000–400 cm⁻¹. The X-ray powder diffraction (XRD) data were recorded on a Siefert XRD 3003 PTS diffractometer, using Cu $K_{\alpha 1}$ radiation (k = 1.5406 Å). UV-Vis spectra were obtained with a shimadzu UV-260 spectrophotometer. Scanning electron microscopy (SEM) images were obtained on a Philips XL-30ESEM equipped with an X-ray energy dispersive detector. Thermogravimetric analysis (TGA) was performed using a Mettler Toledo TGA/DSC instrument with heating rate of 10 °C/min in an air atmosphere. Nitrogen sorption isotherms were recorded on a Belsorp Mini–II instrument at 77K. The amount of sulfur was determined using an ELTRA carbon-sulfur analyzer.

Adsorption kinetics

The pseudo-first-order is based on the following equation:

$$\log\left(q_e - q_t\right) = \log q_e - \frac{k_1}{2.303}t \tag{1}$$

Where q_e and q_t (mg/g) are the amounts of dye adsorbed at equilibrium and contact time (t), respectively and K_1 (min⁻¹) represents the rate constant of pseudo-first-order kinetics. The pseudo-second-order model is generally represented as follows:

$$\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{1}{q_e}$$
(2)

Where K_2 (g.mg⁻¹ min⁻¹) denotes the adsorption constant of pseudo-second-order kinetics.

Adsorption isotherms

The Langmuir isotherm is expressed by the following equation:

$$\frac{c_e}{Q_e} = \frac{1}{Q_{max}} + \frac{1}{k_L Q_{max}}$$
(3)

Where C_e is the equilibrium concentration of the dye in the solution (mg.g⁻¹), Q_e represents the amount of the adsorbed dye at equilibrium (mg/g), Q_{max} denotes the maximum adsorption capacity (mg/g), and K_L is the Langmuir constant (L/g) which is related to the adsorption binding energy. The Freundlich model is represented as:

$$\ln Q_e - Lnk_F = -\frac{l}{n} C_e \tag{4}$$

Where K_F and n are Freundlich adsorption constants which are attributed to the heterogeneous surface of the adsorbent and the desirability of the adsorption, respectively. If n is greater than 1, the adsorption is favorable and in the case of n<1, the adsorption is unfavorable.

Adsorption thermodynamics

The values of thermodynamic parameters including the changes in enthalpy (ΔH° ; kJ/mol), entropy (ΔS° ; kJ/mol), and Gibbs free energy (ΔG° ; kJ/mol) were computed by the following equations:

$$\frac{\Delta S^{\circ}}{R} - \frac{\Delta H^{\circ}}{RT}$$
(5)
-RT LnK₀ = ΔH° -T ΔS° (6)
 $\Delta G^{\circ} = \Delta H^{\circ}$ -T ΔS° (7)

Where K_0 is the thermodynamic equilibrium constant, T is the solution temperature (K), and R is the universal gas constant (8.314 J/mol.K) and the plots of LnK₀ vs. 1/T are shown in Fig. S14.

Scheme S1. Various situation for post synthetic modification of MOFs.

Fig. S1. FT-IR spectra of (a) HKUST (b) HKUST-AMP (c) HKUST-AMP-SO₃H.

Fig. S2. XRD patterns of HKUST (a) simulated (b) as-synthesized, and (c) HKUST-AMP-SO $_3$ H.

Fig. S3. TGA-DSC curves of (a) HKUST (b) HKUST-AMP-SO₃H.

Fig. S4. Adsorption Capacity over HKUST for a) MB, b) FS, and c) Er. Adsorption capacity over HKUST-AMP-SO₃H for d) MB, e) MV, and f) Er.

	Dye removal (%)							
C₀(mg L ⁻¹)		HKUST			HKUST-AMP-SO₃H			
	MB	FS	Er	MB	MV	Er		
20	64	81	46	97	85	72		
40	60	80	42	95	84	71		
60	55	79	39	90	83	70		
80	51	76	36	87	82	68		
100	49	75	31	86	80	65		
200	45	73	20	86	78	60		

Table S1. The dye removal percentage of dyes using HKUST and HKUST-AMP-SO₃H in different concentration of dye molecules.

Fig. S5. Effect of pH on dye removal using (a) HKUST (b) HKUST-AMP-SO₃H.

Temperature (K)	Dye removal (%)							
	HKUST			НК	HKUST-AMP-SO ₃ H			
	MB	FS	Er	MB	MV	Er		
298	64	81	46	97	85	72		
308	50	61	32	72	69	61		
323	23	45	17	54	48	43		

Table S2. The effect of temperature on dye adsorption of MB, FS, Er, and MV over HKUST and HKUST-AMP-SO₃H.

_	Dye removal (%)						
Dose (mg)		HKUST		НК	HKUST-AMP-SO₃H		
	MB	FS	Er	MB	MV	Er	
3	19	43	20	41	61	39	
5	39	66	32	68	76	45	
10	64	81	46	97	85	72	
15	64	82	48	97	88	74	
20	65	84	49	99	89	77	

Table S3. The effect of adsorbent dosage on dye adsorption of MB, FS, Er, and MV.

Fig. S6. Plots of pseudo-first-order kinetics over HKUST for a) MB, b) FS, and c) Er. Plots of pseudo-second-order kinetics over HKUST-AMP-SO₃H for d) MB, e) FS, and f) Er.

Fig. S7. Plots of pseudo-first-order kinetics over HKUST-AMP-SO₃H for a) MB, b) MV, and c) Er. Plots of pseudo-second-order kinetics over HKUST-AMP-SO₃H for d) MB, e) MV, and f) Er.

	$C_{1}(m_{1} + 1)$	pseudo-first-order			pseudo-second-order			
Dye	$C_0(\Pi g L^2)$	K₁(min ⁻¹)	q _e (mg g⁻¹)	R ₂	K₂(g mg⁻¹ min⁻¹)	qe(mg g ⁻¹)	R ₂	
	40	0.140	67.28	0.9849	0.021	91.74	0.9994	
MB	100	0.070	54.18	0.9357	0.011	53.76	0.9893	
	200	0.012	128.20	0.973	0.001	142.85	0.9975	
	40	0.085	38.69	0.9219	2.1×10 ⁻³	59.17	0.9996	
FS	100	0.027	125.89	0.849	1×10 ⁻³	188.67	0.9911	
	200	0.029	380.18	0.9791	0.6×10 ⁻³	416.66	0.9930	
	40	0.024	47.86	0.8626	0.002	66.66	0.9885	
Er	100	0.020	114.81	0.9704	0.5×10 ⁻³	156.25	0.9816	
	200	0.027	218.77	0.9233	0.6×10 ⁻³	312.5	0.990	

Table S4. Adsorption kinetics parameters of MB, FS, and Er using HKUST as adsorbent.

Table S5. Adsorption kinetics parameters of MB, MV, and Er using HKUST-AMP-SO₃H as adsorbent.

Duo	$C (m \alpha 1^{-1})$	pse	eudo-first-ord	er	pseudo-second-order			
Dye		K₁(min⁻¹)	q _e (mg g⁻¹)	R ₂	K ₂ (g mg ⁻¹ min ⁻¹)	qe(mg g⁻¹)	R ₂	
	40	0.129	89.61	0.9566	3 ×10 ⁻³	92.59	0.9973	
MB	100	0.091	201.37	0.9874	1×10 ⁻³	212.76	0.9942	
	200	0.105	425.99	0.988	0.1×10 ⁻³	400	0.9993	
	40	0.002	129.12	0.9434	2×10 ⁻³	204.08	0.9999	
MV	100	0.003	153.12	0.9451	3×10 ⁻³	175.43	0.9987	
	200	0.1275	398.10	0.969	0.3×10 ⁻³	370.37	0.9956	
	40	0.025	24.54	0.9261	0.005	64.51	0.9976	
Er	100	0.096	25.02	0.9235	0.006	149.25	0.9996	
	200	0.073	323.59	0.938	0.5×10 ⁻³	400	0.9956	

Fig. S8. Langmuir isotherm of adsorption over HKUST for a) MB, b) FS, and c) Er. Langmuir isotherm of adsorption over HKUST-AMP-SO₃H for d) MB, e) MV, and f) Er at 298, 308,318 ^oK.

Fig. S9. Freundlich isotherm of adsorption over HKUST for a) MB, b) FS, and c) Er. Freundlich isotherm of adsorption over HKUST-AMP-SO₃H for d) MB, e) MV, and f) Er at 298, 308,318 $^{\circ}$ K.

Dye	T(V)		Langmuir					Freundlich		
	I (K)	Q(mg/g)	K _L (L mg⁻¹)	RL	R ₂		n _F	K _F	R ₂	
	298	238.09	0.0214	0.423	0.980		1.620	81.10	0.921	
MB	308	224.65	0.0192	0.389	0.991		1.425	80.34	0.932	
	318	204.21	0.0142	0.354	0.987		1.372	78.12	0.968	
	298	243.90	0.0082	0.627	0.998		0.991	54.99	0.962	
FS	308	234.02	0.0072	0.605	0.994		0.990	52.76	0.942	
	318	210.54	0.0055	0.586	0.991		0.859	50.12	0.957	
	298	200	0.0056	0.709	0.991		1.282	57.64	0.983	
Er	308	183.21	0.0045	0.692	0.984		1.204	54.98	0.964	
	318	176.09	0.0023	0.675	0.995		1.145	52.56	0.978	
Er	318 298 308 318	210.54 200 183.21 176.09	0.0055 0.0056 0.0045 0.0023	0.586 0.709 0.692 0.675	0.991 0.991 0.984 0.995		0.859 1.282 1.204 1.145	50.12 57.64 54.98 52.56	0.957 0.983 0.964 0.978	

Table S6. Isotherm parameters of MB, FS, and Er over HKUST.

Table S7. Isotherm parameters of MB, MV, and Er over HKUST-AMP-SO₃H.

Dye T(K) —		Langm	Freundlich					
	Q(mg/g)	K _L (L mg ⁻¹)	RL	R ₂	 n _F	K _F	R ₂	
	298	833.33	0.0096	0.598	0.993	 1.240	119.02	0.974
MB	308	810.98	0.0084	0.431	0.986	1.178	110.56	0.962
	318	797.45	0.0071	0.367	0.991	1.023	105.98	0.979
2	298	714.28	0.0706	0.201	0997	1.049	135.74	0.959
MV	308	706.23	0.0695	0.187	0.988	1.023	123.68	0.969
	318	695.87	0.0618	0.145	0.992	1.001	109.06	0.973
	208	833.33	0 0033	0 801	0 001	1 275	122 70	0 967
-	290	012.00	0.0033	0.801	0.994	1.275	133.79	0.907
Er	308	813.98	0.0029	0.765	0.991	1.165	126.25	0.952
	318	798.23	0.0021	0.632	0.989	1.078	117.04	0.975

Dye	Т(К)	LnK ₀	∆G°(kJ mol⁻¹)	ΔH [°] (kJ mol⁻¹)	ΔS° (J mol⁻¹ K⁻¹)
	298	1.43	-3.30		
MB	308	1.40	-2.91	-5.08	-5.09
	318	1.30	-2.73		
	298	1.04	-2.52		
FS	308	0.91	-2.14	-13.35	-36.04
	318	0.70	-1.74		
	298	0.65	-1.45		
Er	308	0.5	-1.19	-12.98	-38.10
	318	0.32	-0.81		
-					

 Table S8.
 Thermodynamic parameters of MB, FS, and Er adsorption over HKUST.

Table S9. Thermodynamic parameters of MB, MV, and Er adsorption over HKUST-AMP-SO $_3$ H.

Dye	Т(К)	LnK ₀	∆G°(kJ mol⁻¹)	∆H [°] (kJ mol⁻¹)	ΔS° (J mol⁻¹ K⁻¹)
	298	2.22	-5.40		
MB	308	1.87	-4.73	-22.56	-57.58
	318	1.80	-4.14		
	298	6 1 2	-4 29		
MV	308	6.01	-4.13	-10.61	-15.35
	318	5.85	-3.96		
	200	1 01	2 4 2		
_	298	1.01	-2.42		
Er	308	0.89	-2.21	-10.23	-25.89
	318	0.75	-1.89		

Fig. S10. The reverse performance of (a) HKUST and (b) HKUST-AMP-SO₃H for FS-MV mixture.

Fig. S11. The effect of recycling run on adsorption of MB, Er, and MV over HKUST-AMP-SO₃H.

Fig. S12. FT-IR spectra of HKUST-AMP-SO $_3$ H (a) before and (b) after using as an adsorbent.

Fig. S13. XRD patterns of HKUST-AMP-SO $_3$ H (a) before and (b) after using as an adsorbent.

Fig. S14. Van't Hoff plots of used dye molecule over a) HKUST b) HKUST-AMP-SO₃H.