## **Electronic Supplementary Information (ESI)**

## Photolytic mechanisms of hydroxylamine

by

Jittima Thisuwan

Division of Science Education Faculty of Education Nakhon Phanom University, Nakhon Phanom 48000, Thailand

Phorntep Promma

and

Kritsana Sagarik\*

School of Chemistry Institute of Science Suranaree University of Technology Nakhon Ratchasima 30000 Thailand

Figure S1 a) Schematic diagram showing doubly occupied and active spaces used in CASPT2(10,9) calculations. b)-c) Spatial distributions of the orbitals potentially involved in  $S_0 \rightarrow S_1$  excitation of NH<sub>2</sub>OH.



Figure S2 a) Linear relationship between  $\ln k^{Q-vib}$  and 1/T used in the calculations of the enthalpy of activation ( $\Delta H^{\dagger}$ ) for formation of the precursor in the S<sub>0</sub> state (structure G1-[2]<sup> $\dagger$ </sup> in channel (1)).

b) Linear relationship between  $\Delta G^{\text{Rel}}$  and T used in the calculation of the enthalpy of the exothermic process ( $\Delta H^{\text{Rel}}$ ) in the S<sub>1</sub> state (E1-[1]\* $\rightarrow$  E1-[3]\*).



Figure S2a-b

**Table S1**Characteristic structures on the S1 potential energy curve for the O–Hdissociation in channel (1). The electronic states and the CI coefficients were

| Structures   | S                                              | 50        | S <sub>1</sub>                                           |           |  |
|--------------|------------------------------------------------|-----------|----------------------------------------------------------|-----------|--|
| Structures   | Conf.                                          | CI Coeff. | Conf.                                                    | CI Coeff. |  |
| E1-[1]       | $\Psi_0$                                       | 0.9789    | $\Psi_{\bar{9}}^{\bar{1}0}$                              | 0.9715    |  |
|              | $\Psi^{11,\bar{1}1}_{\ 8,\bar{8}}$             | 0.0764    | $\Psi^{\overline{10},11,\bar{1}1}_{\ \bar{9},8,\bar{8}}$ | 0.0694    |  |
| <b>e</b> ==> | $\Psi_0$                                       | 0.9730    | $\Psi_{\bar{9}}^{\bar{1}0}$                              | 0.9659    |  |
|              | $\Psi \overline{\overline{8}}^{\overline{10}}$ | 0.0649    | $\Psi^{10,\bar{1}0}_{9,\bar{8}}$                         | 0.0844    |  |
| E1-[3]§      | Ψ <sub>0</sub>                                 | 0.9294    | $\Psi_{\bar{9}}^{\bar{1}0}$                              | 0.9463    |  |
|              | $\Psi^{ar{1}0}_{ar{8}}$                        | 0.2293    | $\Psi^{10,\bar{1}0}_{9,\bar{8}}$                         | 0.2441    |  |
|              | $\Psi^{10,\bar{1}0}_{8,\bar{8}}$               | 0.2191    | -                                                        | -         |  |

obtained from CASPT2(10,9) calculations.

E1-[2]<sup>‡</sup>

Table S2Characteristic structures on the S1 potential energy curve for the N–O<br/>dissociation in channel (2). The electronic states and the CI coefficients were<br/>obtained from CASPT2(10,9) calculations.

| Structures          | S                                | 50        | S <sub>1</sub>                                           |           |  |
|---------------------|----------------------------------|-----------|----------------------------------------------------------|-----------|--|
| Structures          | Conf.                            | CI Coeff. | Conf.                                                    | CI Coeff. |  |
| F2_[1]              | $\Psi_0$                         | 0.9518    | $\Psi^{\bar{1}0}_{\bar{9}}$                              | 0.9453    |  |
| 122-[1]             | $\Psi^{ar{1}0,10}_{\ \bar{8},8}$ | 0.1177    | $\Psi^{10,\bar{1}1}_{9,\bar{8}}$                         | 0.1591    |  |
|                     | -                                | -         | $\Psi^{\overline{10},11,\bar{1}1}_{\ \bar{9},8,\bar{8}}$ | 0.0939    |  |
| E2-[2]*             | $\Psi_0$                         | 0.9700    | $\Psi_{\overline{9}}^{\overline{10}}$                    | 0.9590    |  |
|                     | $\Psi^{11,\bar{1}1}_{8,\bar{8}}$ | 0.1348    | $\Psi^{\overline{10},11,\bar{11}}_{\ \bar{9},8,\bar{8}}$ | 0.1202    |  |
| E2-[3] <sup>§</sup> | $\Psi_0$                         | 0.8839    | $\Psi_{\overline{9}}^{\overline{1}0}$                    | 0.9312    |  |
|                     | $\Psi_{\bar{8}}^{\bar{1}0}$      | 0.3061    | $\Psi^{10,\bar{1}0}_{9,\bar{8}}$                         | 0.2852    |  |
| <b>~</b>            | $\Psi^{10,\bar{1}0}_{8,\bar{8}}$ | 0.2684    | -                                                        | -         |  |

**Table S3**Characteristic structures on the S1 potential energy curve for the N–H<sup>cis</sup>dissociation in channel (3). The electronic states and the CI coefficients were

| Structures | S                                     | 50        | S <sub>1</sub>                                           |           |  |
|------------|---------------------------------------|-----------|----------------------------------------------------------|-----------|--|
| Structures | Conf.                                 | CI Coeff. | Conf.                                                    | CI Coeff. |  |
| E3-[1]     | $\Psi_0$                              | 0.9807    | $\Psi_{\bar{9}}^{\bar{1}0}$                              | 0.9733    |  |
|            | $\Psi^{11,\bar{1}1}_{8,\bar{8}}$      | 0.0871    | $\Psi^{\overline{10},11,\bar{11}}_{\ \bar{9},8,\bar{8}}$ | 0.0790    |  |
| -          | $\Psi_0$                              | 0.9740    | $\Psi_{\bar{9}}^{\bar{1}0}$                              | 0.9669    |  |
|            | $\Psi_{\overline{8}}^{\overline{1}0}$ | 0.0641    | $\Psi^{10,\bar{1}0}_{9,\bar{8}}$                         | 0.0843    |  |
| E3-[3]§    | Ψ <sub>0</sub>                        | 0.9438    | $\Psi_{\overline{9}}^{\overline{1}0}$                    | 0.9483    |  |
|            | $\Psi^{\overline{1}0}_{\overline{8}}$ | 0.1943    | $\Psi^{10,\bar{1}0}_{9,\bar{8}}$                         | 0.2240    |  |
|            | $\Psi^{10,\bar{1}0}_{8,\bar{8}}$      | 0.1637    | -                                                        | -         |  |

obtained from CASPT2(10,9) calculations.

## E3-[2]\*

**Table S4**Characteristic structures on the S1 potential energy curve for the N–H<sup>trans</sup>dissociation in channel (4). The electronic states and the CI coefficients were

| Structures | S                                   | 50        | S <sub>1</sub>                             |           |  |
|------------|-------------------------------------|-----------|--------------------------------------------|-----------|--|
| Structures | Conf.                               | CI Coeff. | Conf.                                      | CI Coeff. |  |
| E4-[1]     | Ψ <sub>0</sub>                      | 0.9790    | $\Psi_{\bar{9}}^{\bar{1}0}$                | 0.9716    |  |
|            | $\Psi^{11,  \bar{1}1}_{8, \bar{8}}$ | 0.0764    | $\Psi^{10,\overline{1}0}_{9,\overline{8}}$ | 0.0753    |  |
| E4-[2]*    | Ψ <sub>0</sub>                      | 0.9670    | $\Psi_{\bar{9}}^{\bar{1}0}$                | 0.9587    |  |
| I          | $\Psi^{11,ar{1}1}_{8,ar{8}}$        | 0.1033    | $\Psi^{10,\bar{1}0}_{9,\bar{8}}$           | 0.1317    |  |
|            | $\Psi^{10,\bar{1}0}_{8,\bar{8}}$    | 0.0871    | -                                          | -         |  |
| F4-[3]§    | $\Psi_{\bar{9}}^{\bar{1}0}$         | 0.9417    | $\Psi_0$                                   | 0.9309    |  |
| E4-[3]*    | $\Psi^{10,\bar{1}0}_{9,\bar{8}}$    | 0.2568    | $\Psi^{\overline{1}0}_{\overline{8}}$      | 0.2330    |  |
| QQ         | _                                   | -         | $\Psi^{10,\bar{1}0}_{8,\bar{8}}$           | 0.1932    |  |

obtained from CASPT2(10,9) calculations.

| Table S5 | Characteristic structures on the S <sub>1</sub> potential energy curve for the formation |
|----------|------------------------------------------------------------------------------------------|
|          | NH <sub>3</sub> O in channel (5). The electronic states and the CI coefficients were     |
|          |                                                                                          |

| Ctore tores         | S                                     | 50        | $S_1$                                                    |           |  |
|---------------------|---------------------------------------|-----------|----------------------------------------------------------|-----------|--|
| Structures          | Conf.                                 | CI Coeff. | Conf.                                                    | CI Coeff. |  |
| E5-[1]              | $\Psi_0$                              | 0.6747    | $\Psi_{\overline{9}}^{\overline{10}}$                    | 0.9306    |  |
| · · · · ·           | $\Psi_{\overline{8}}^{\overline{10}}$ | 0.6018    | $\Psi^{10,\bar{1}0}_{9,\bar{8}}$                         | 0.2924    |  |
|                     | $\Psi^{10,\bar{1}0}_{8,\bar{8}}$      | 0.3501    | -                                                        | -         |  |
| E5-[2] <sup>‡</sup> | $\Psi_0$                              | 0.9514    | $\Psi_{\overline{9}}^{\overline{10}}$                    | 0.9525    |  |
|                     | $\Psi_{\overline{8}}^{\overline{1}1}$ | 0.1352    | $\Psi^{10,\bar{1}1}_{9,\bar{8}}$                         | 0.1129    |  |
|                     | $\Psi^{11,ar{1}1}_{8,ar{8}}$          | 0.0952    | $\Psi^{\overline{10},11,\bar{1}1}_{\ \bar{9},8,\bar{8}}$ | 0.1071    |  |
| E5-[3]              | $\Psi_0$                              | 0.9715    | $\Psi_{\overline{9}}^{\overline{10}}$                    | 0.9711    |  |
|                     | $\Psi^{11,ar{1}1}_{8,ar{8}}$          | 0.1018    | $\Psi^{\overline{10},11,\bar{1}1}_{\ \bar{9},8,\bar{8}}$ | 0.1180    |  |
|                     | $\Psi^{\overline{1}1}_{\overline{8}}$ | 0.0783    | -                                                        | -         |  |

obtained from CASPT2(10,9) calculations.

**Table S6**Characteristic structures on the  $S_1$  potential energy curve for the formation of<br/>HNO and  $H_2$  in channel (6). The electronic states and the CI coefficients were<br/>obtained from CASPT2(10,9) calculations.

| Structures          | S                                     | 50        | S <sub>1</sub>                                         |           |  |
|---------------------|---------------------------------------|-----------|--------------------------------------------------------|-----------|--|
| Structures          | Conf.                                 | CI Coeff. | Conf.                                                  | CI Coeff. |  |
| E6-[1]              | Ψ <sub>0</sub>                        | 0.9141    | $\Psi_{\bar{9}}^{\bar{1}0}$                            | 0.9086    |  |
|                     | $\Psi^{10,\bar{1}0}_{8,\bar{8}}$      | 0.2000    | $\Psi^{10,\overline{11}}_{9,\overline{9}}$             | 0.2675    |  |
|                     |                                       |           |                                                        |           |  |
| E6-[2] <sup>‡</sup> | $\Psi_0$                              | 0.9212    | $\Psi_{\bar{9}}^{\bar{1}0}$                            | 0.9270    |  |
|                     | $\Psi_{\bar{7}}^{\bar{1}0}$           | 0.0628    | $\Psi^{\overline{10},11,\bar{11}}_{\bar{9},8,\bar{8}}$ | 0.2569    |  |
|                     | Ψ                                     | 0.0402    | 10                                                     | 0.0557    |  |
| E6-[3]              |                                       | 0.9495    | $\Psi_{\overline{9}}$                                  | 0.9557    |  |
|                     | $\Psi^{10,10}_{8,\bar{8}}$            | 0.1960    | $\Psi^{10,10}_{9,\overline{8}}$                        | 0.0772    |  |
|                     | $\Psi_{\overline{8}}^{\overline{10}}$ | 0.0743    | -                                                      | -         |  |
| 20                  |                                       |           |                                                        |           |  |

**Table S7**Characteristic structures on the  $S_1$  potential energy curve for the formation of<br/>NH-H2O complex. The electronic states and the CI coefficients were obtained<br/>from CASPT2(10,9) calculations.

| Structures | S                                     | 50        | S <sub>1</sub>                                           |           |  |
|------------|---------------------------------------|-----------|----------------------------------------------------------|-----------|--|
| Structures | Conf.                                 | CI Coeff. | Conf.                                                    | CI Coeff. |  |
| E7-[1] 🔍   | $\Psi_{\bar{9}}^{\bar{1}0}$           | 0.9310    | $\Psi_0$                                                 | 0.6965    |  |
| Ì Ì₽       | $\Psi^{10,\bar{1}0}_{9,\bar{8}}$      | 0.2992    | $\Psi_{\bar{8}}^{\bar{1}0}$                              | 0.5798    |  |
|            | -                                     | -         | $\Psi^{10,\bar{1}0}_{8,\bar{8}}$                         | 0.3567    |  |
| E7-[2]§    | Ψ <sub>0</sub>                        | 0.6858    | $\Psi_{\bar{9}}^{\bar{1}0}$                              | 0.9706    |  |
|            | $\Psi^{\overline{11},11}_{\bar{8},8}$ | 0.1057    | $\Psi^{\overline{10},11,\bar{1}1}_{\ \bar{9},8,\bar{8}}$ | 0.1496    |  |
| 6          |                                       |           |                                                          |           |  |
| G7-[3]     | $\Psi_0$                              | 0.6956    | $\Psi_{\bar{9}}^{\bar{1}0}$                              | 0.9790    |  |
|            | $\Psi^{\bar{1}1,11}_{\ \bar{8},8}$    | 0.0510    | $\Psi^{\overline{10},11,\bar{11}}_{\ \bar{9},8,\bar{8}}$ | 0.0718    |  |
|            |                                       |           |                                                          |           |  |

**Table S8**Rate constants (k), enthalpies of activation ( $\Delta H^{\dagger}$ ) and Gibbs free energy barriers ( $\Delta G^{\dagger}$ ) for the formation of the<br/>precursors in the direct covalent bond dissociations in the S<sub>0</sub> state, obtained based on transition state theory<br/>and the potential energy curves. Energies, rate constants and temperatures are in kJ mol<sup>-1</sup>, s<sup>-1</sup> and K,<br/>respectively.

|                                       | $\Delta \mathbf{E}^{\dagger}$ | $\Delta H^{\dagger}$ | T <sub>c</sub> | Т    | k <sup>Class</sup>     | k <sup>Q-vib</sup>     | k <sup>S-Wig</sup>     | $\Delta \mathbf{G}^{\dagger}$ |
|---------------------------------------|-------------------------------|----------------------|----------------|------|------------------------|------------------------|------------------------|-------------------------------|
|                                       |                               |                      |                | 308  | 1.07×10 <sup>-22</sup> | 1.42×10 <sup>-21</sup> | 4.81×10 <sup>-21</sup> | 199                           |
| $G1-[1] \rightarrow G1-[2]^{\dagger}$ | 209                           | 199                  | 371            | 585  | 4.00×10 <sup>-6</sup>  | 1.38×10 <sup>-5</sup>  | 2.29×10-5              | 201                           |
|                                       |                               |                      |                | 1200 | 1.18×10 <sup>4</sup>   | $1.82 \times 10^{4}$   | 2.11×10 <sup>4</sup>   | 210                           |
|                                       |                               |                      |                | 308  | 3.42×10 <sup>-19</sup> | 8.42×10 <sup>-20</sup> | 1.81×10 <sup>-19</sup> | 188                           |
| $G1-[1] \rightarrow G2-[2]^{\dagger}$ | 216                           | 190                  | 257            | 585  | 2.53×10-5              | 1.38×10 <sup>-4</sup>  | 1.82×10-4              | 190                           |
|                                       |                               |                      |                | 1200 | 4.46×10 <sup>4</sup>   | $7.75 \times 10^{4}$   | 8.34×10 <sup>4</sup>   | 195                           |
|                                       |                               |                      |                | 308  | 3.72×10 <sup>-24</sup> | 4.75×10 <sup>-23</sup> | 9.21×10 <sup>-23</sup> | 207                           |
| $G1-[1] \rightarrow G3-[2]^{\dagger}$ | 222                           | 208                  | 232            | 585  | 7.49×10 <sup>-7</sup>  | 2.39×10-6              | 3.01×10-6              | 209                           |
|                                       |                               |                      |                | 1200 | 5.79×10 <sup>3</sup>   | 8.54×10 <sup>3</sup>   | 9.07×10 <sup>3</sup>   | 217                           |
|                                       |                               |                      |                | 308  | 1.37×10 <sup>-37</sup> | 3.00×10 <sup>-35</sup> | 8.02×10 <sup>-35</sup> | 279                           |
| $G1-[1] \rightarrow G4-[2]^{\dagger}$ | 314                           | 281                  | 310            | 585  | 9.87×10 <sup>-14</sup> | 9.87×10 <sup>-13</sup> | 1.44×10 <sup>-12</sup> | 281                           |
|                                       |                               |                      |                | 1200 | 4.24×10 <sup>0</sup>   | $8.82 \times 10^{0}$   | 9.80×10 <sup>0</sup>   | 286                           |

 $\Delta E^{\dagger}$  = energy barrier with respect to structure **G1-[1]**; T<sub>c</sub> = crossover temperature; <sup>+</sup> = transition structure; k<sup>Class</sup> = rate constant obtained from classical transition state theory (TST); k<sup>Q-vib</sup> = rate constant obtained with quantized vibrations including the zero-point vibrational energy; k<sup>S-Wig</sup> = rate constant obtained with quantized vibrations and tunneling correction through the simplified Wigner correction to the second order;  $\Delta H^{\dagger}$  and  $\Delta G^{\dagger}$  = enthalpy of activation and Gibbs free energy barrier with respect to structure **G1-[1]**.

**Table S9**Enthalpies ( $\Delta H^{Rel}$ ) and relative Gibbs free energies ( $\Delta G^{Rel}$ ) for direct covalent bond dissociations in the S1<br/>state, obtained based on the transition state theory and barrierless potential energy curves ( $\Delta E^{\dagger} = 0$  kJ mol<sup>-1</sup>). Energies and temperatures are in kJ mol<sup>-1</sup> and K, respectively.

|                                                                    | $\Delta \mathbf{E}^{\mathbf{Rel}}$ | $\Delta \mathbf{H}^{\mathbf{Rel}}$ | Т    | $\Delta \mathbf{G}^{\mathbf{Rel}}$ |
|--------------------------------------------------------------------|------------------------------------|------------------------------------|------|------------------------------------|
| E1-[1] <sup>*</sup> → E1-[3]§                                      |                                    |                                    | 308  | -10                                |
|                                                                    | -227                               | -3                                 | 585  | -15                                |
|                                                                    |                                    |                                    | 1200 | -30                                |
|                                                                    |                                    |                                    | 308  | -127                               |
| $\mathrm{E2}\text{-}[2]^* \rightarrow \mathrm{E2}\text{-}[3]^{\S}$ | -168                               | -124                               | 585  | -130                               |
| _                                                                  |                                    |                                    | 1200 | -136                               |
|                                                                    |                                    |                                    | 308  | -12                                |
| $E3-[2]^* \rightarrow E3-[3]^{\S}$                                 | -12                                | -9                                 | 585  | -28                                |
|                                                                    |                                    |                                    | 1200 | -63                                |

 $\Delta E^{Rel}$  = relative energy with respect to the vertically excited structure; \* = vertically excited structure; \$ = structure at the intersection of the S<sub>0</sub> and S<sub>1</sub> potential energy curves;  $\Delta H^{Rel}$  and  $\Delta G^{Rel}$  = enthalpy and relative Gibbs free energy with respect to the vertically excited structure.

**Table S10**Enthalpies ( $\Delta H^{Rel}$ ) and relative Gibbs free energies ( $\Delta G^{Rel}$ ) for formations of NH<sub>3</sub>O, HNO and H<sub>2</sub>, and the N-<br/>H..H<sub>2</sub>O complex obtained from unimolecular isomerizations of dissociated structures in the S<sub>0</sub> state,

|                                                                  | $\Delta E^{Rel}$ | $\Delta H^{Rel}$ | Τ    | $\Delta G^{Rel}$ |
|------------------------------------------------------------------|------------------|------------------|------|------------------|
|                                                                  |                  |                  | 308  | -215             |
| $\text{G5-[1]}^{\S} \rightarrow \text{G5-[3]}$                   | -241             | -219             | 585  | -212             |
|                                                                  |                  |                  | 1200 | -205             |
|                                                                  |                  | -279             | 308  | -301             |
| $\mathbf{G6\text{-}[1]^{\$} \rightarrow \mathbf{G6\text{-}[3]}}$ | -285             |                  | 585  | -319             |
| _                                                                |                  |                  | 1200 | -363             |
|                                                                  |                  |                  | 308  | -154             |
| $\text{G7-[1]} \rightarrow \text{G7-[3]}$                        | -180             | -154             | 585  | -152             |
|                                                                  |                  |                  | 1200 | -152             |

computed based on transition state theory and barrierless potential energy curves ( $\Delta E^{\dagger} = 0 \text{ kJ mol}^{-1}$ ). Energies and temperatures are in kJ mol<sup>-1</sup> and K, respectively.

 $\Delta E^{\text{Rel}}$  = relative energy with respect to the precursor; \$ = structure at the intersection of the S<sub>0</sub> and S<sub>1</sub> potential energy curves;  $\Delta H^{\text{Rel}}$  and  $\Delta G^{\text{Rel}}$  = enthalpy and relative Gibbs free energy with respect to dissociated structure.

**Table S11**Rate constants (k), enthalpies ( $\Delta H$ ) and Gibbs free energies ( $\Delta G$ ) for formations of NH<sub>3</sub>O, HNO and H<sub>2</sub>, and<br/>the N-H..H<sub>2</sub>O complex from unimolecular isomerizations of dissociated structures in the S<sub>1</sub> state, obtained<br/>based on the transition state theory and potential energy curves. Energies, rate constants and temperatures<br/>are in kJ mol<sup>-1</sup>, s<sup>-1</sup> and K, respectively.

|                                                                             | $\Delta E^{\dagger  (\mathrm{Rel})}$ | $\Delta H^{\dagger  (Rel)}$ | Tc  | Т    | k <sup>Class</sup>    | k <sup>Q-vib</sup>    | k <sup>S-Wig</sup>    | $\Delta G^{\ddagger \text{(Rel)}}$ |
|-----------------------------------------------------------------------------|--------------------------------------|-----------------------------|-----|------|-----------------------|-----------------------|-----------------------|------------------------------------|
|                                                                             |                                      |                             |     | 308  | 7.98×10 <sup>2</sup>  | 2.40×10 <sup>3</sup>  | 1.04×10 <sup>4</sup>  | 56                                 |
| $E5-[1] \rightarrow E5-[2]^{\dagger}$                                       | 55                                   | 52                          | 437 | 585  | 2.01×10 <sup>7</sup>  | 3.14×10 <sup>7</sup>  | 6.03×10 <sup>7</sup>  | 63                                 |
|                                                                             |                                      |                             |     | 1200 | 6.56×10 <sup>9</sup>  | 7.55×10 <sup>9</sup>  | 9.20×10 <sup>9</sup>  | 81                                 |
|                                                                             |                                      |                             |     | 308  |                       |                       |                       | (-9)                               |
| $\mathrm{E5}\text{-}[2]^{\dagger} \rightarrow \mathrm{E5}\text{-}[3]$       | (-41)                                | (-12)                       | -   | 585  | -                     | Barierless potential  | -                     | (-7)                               |
|                                                                             |                                      |                             |     | 1200 |                       |                       |                       | (-1)                               |
|                                                                             |                                      |                             |     | 308  | 6.38×10 <sup>3</sup>  | 5.04×10 <sup>5</sup>  | 1.42×10 <sup>6</sup>  | 42                                 |
| $\mathbf{E6}\text{-}[1]^{\$} \rightarrow \mathbf{E6}\text{-}[2]^{\ddagger}$ | 71                                   | 57                          | 324 | 585  | 2.87×10 <sup>9</sup>  | $1.49 \times 10^{10}$ | 2.24×10 <sup>10</sup> | 33                                 |
|                                                                             |                                      |                             |     | 1200 | 4.88×10 <sup>12</sup> | 7.78×10 <sup>12</sup> | 8.71×10 <sup>12</sup> | 12                                 |
|                                                                             |                                      |                             |     | 308  |                       |                       |                       | (-234)                             |
| $\mathrm{E6}\text{-}[2]^{\dagger} \rightarrow \mathrm{E6}\text{-}[3]$       | (-221)                               | (-201)                      | -   | 585  | -                     | Barierless potential  | -                     | (-262)                             |
|                                                                             |                                      |                             |     | 1200 |                       |                       |                       | (-328)                             |
| -                                                                           |                                      |                             |     | 308  |                       |                       |                       | (-254)                             |
| $\text{E7-[1]} \rightarrow \text{E7-[3]}^{\$}$                              | (-249)                               | (-230)                      | -   | 585  | -                     | Barierless potential  | -                     | (-272)                             |
|                                                                             |                                      |                             |     | 1200 |                       |                       |                       | (-319)                             |

 $\Delta E^{\dagger}$  and  $\Delta E^{Rel}$  = relative energies on the potential energy curve with respect to the precursor;  $T_c$  = crossover temperature;  $^{\dagger}$  = transition structure;  $^{\$}$  = structure at the intersection of the S<sub>0</sub> and S<sub>1</sub> potential energy curves;  $k^{Class}$  = rate constant obtained from classical transition-state theory (TST);  $k^{Q-vib}$  = rate constant obtained with quantized vibrations including the zero-point vibrational energy;  $k^{S-Wig}$  = rate constant obtained with quantized vibrations and tunneling correction through the simplified Wigner correction to the second order;  $\Delta H^{\dagger}$  and  $\Delta G^{\dagger}$  = enthalpy and Gibbs free energy barrier with respect to the precursor;  $\Delta H^{Rel}$  and  $\Delta G^{Rel}$  = enthalpy and relative Gibbs free energy with respect to the transition structure; (...) = value obtained based on barrierless potential.

**Table S12**Vertical excitation wavelengths ( $\lambda$ ) and energies ( $E^{Ex}$ ) and<br/>corresponding normalized oscillator strengths with respect<br/>to structure G1-[1].

| Structure           | λ<br>(nm) | E <sup>Ex</sup><br>(eV) | Oscillator<br>strength |
|---------------------|-----------|-------------------------|------------------------|
| G1-[1]              | 194       | 6.38                    | 1.00                   |
| G2-[2] <sup>‡</sup> | 435       | 2.85                    | 0.007                  |
| G3-[2] <sup>‡</sup> | 530       | 2.34                    | 0.010                  |
| G4-[2] <sup>‡</sup> | 646       | 1.92                    | 0.010                  |