Reaction kinetics of a water-soluble palladium- $\boldsymbol{\beta}$-cyclodextrin catalyst for a Suzuki-Miyaura cross-coupling in continuous-flow

ELECTRONIC SUPPLEMENTARY INFORMATION

Yukun Liu and Ryan L. Hartman*
Department of Chemical and Biomolecular Engineering, New York University, Brooklyn, NY, 11201, USA. E-mail: ryan.hartman@nyu.edu

Table of Figures

Figure S1. GC-MS results of reaction at $40^{\circ} \mathrm{C}$ and 2 min residence time. (a) 4-bromoanisole; (b) 4-
Methoxybipphenyl... 3
Figure S2. 4-Bromoanisole droplets size distribution before and after reagents flow through the reactor and under $20^{\circ} \mathrm{C}, 70^{\circ} \mathrm{C}$ 5

Figure S3. Process flow diagram of the continuous in-line UV-Vis spectroscopy for RTDs
\qquad
Figure S4. Photo of RTD measurement experiments ... 7
Figure S5. UV-vis absorbance over time and normalized RTD functions at carrier volumetric flow rate $33 \mu \mathrm{~L} / \mathrm{min}$ 9

Figure S6. UV-vis absorbance over time and normalized RTD functions at carrier volumetric flow rate $50 \mu \mathrm{~L} / \mathrm{min}$ 10

Figure S7. UV-vis absorbance over time and normalized RTD functions at carrier volumetric flow rate $100 \mu \mathrm{~L} / \mathrm{min}$11

Figure S8. UV-vis absorbance over time and normalized RTD functions at carrier volumetric flow rate $133 \mu \mathrm{~L} / \mathrm{min}$12

Figure S9. UV-vis absorbance over time and normalized RTD functions at carrier volumetric flow rate $200 \mu \mathrm{~L} / \mathrm{min}$ 13

Figure S10. UV-vis absorbance over time and normalized RTD functions at carrier volumetric flow rate $400 \mu \mathrm{~L} / \mathrm{min}$

Figure S11. Configuration of reactor and its dead volumes ... 18
Figure S12. Linear regression for the activation energy for oxidative addition step 20
Figure S13. 4-bromoanisole conversion for extended residence time at $80^{\circ} \mathrm{C}$........................... 22

1. Gas chromatograph - mass spectroscopy (GC-MS) results

Figure S1. GC-MS results of reaction at $40^{\circ} \mathrm{C}$ and 2 min residence time. (a) 4-bromoanisole; (b) 4-Methoxybipphenyl

2. Hatta modulus calculations

The value of Hatta modulus is calculated by:

$$
\begin{equation*}
H a=\frac{\left(D_{A} k c_{A} c_{B}^{b u l k}\right)^{\frac{1}{2}}}{k_{L}} \tag{S1}
\end{equation*}
$$

where D_{A} is the diffusivity of reactant 4-bromoanisole, c_{A} is the concentration of 4bromoanisole, $c_{B}^{\text {bulk }}$ is the concentration of palladium catalyst, k is the rate constant of oxidative addition step, and k_{L} is the liquid phase mass transfer coefficient, which is estimated by:

$$
\begin{equation*}
k_{L}=\frac{D_{A}}{\delta} \tag{S2}
\end{equation*}
$$

where δ is the film thickness.
The diameter distribution of 4-bromoanisole droplets was determined by dynamic light scattering (DLS), and the results are shown in figure S2. The diffusivity of 4-bromoanisole in water D_{A} is estimated to be around $2 \times 10^{-9} \mathrm{~m}^{2} / \mathrm{s}$ at $20^{\circ} \mathrm{C}$ and $3 \times 10^{-9} \mathrm{~m}^{2} / \mathrm{s}$ at $80^{\circ} \mathrm{C} .1,2$ Here, c_{A} is $0.435 \mathrm{~mol} / \mathrm{L}$, and $c_{B}^{\text {bulk }}$ is $2.17 \times 10^{-5} \mathrm{~mol} / \mathrm{L}$. At $20^{\circ} \mathrm{C}$, rate constant k is calculated to be $348.9 \mathrm{~L}^{2} \mathrm{~mol}^{-2} \mathrm{~s}^{-1}$; at $80^{\circ} \mathrm{C}, \mathrm{k}$ is evaluated as $9914.2 \mathrm{~L}^{2} \mathrm{~mol}^{-2} \mathrm{~s}^{-1}$. As a worst-case scenario, the radius of the emulsion droplets is considered as the maximum possible film thickness δ.

The size distribution of 4-bromoanisole droplets before injection into the reactor and after they flowed out of the reactor were measured by DLS at $20^{\circ} \mathrm{C}$ and $70^{\circ} \mathrm{C}$. The average size ranged from 236.4 nm to 809.8 nm . Size distributions by number are shown in figure S2. If the reaction was fast enough that mass transfer limitations can no longer be neglected, then the Hatta number $H a$ should be $>0.02 .{ }^{3}$ At the maximum reaction rate, which appeared at $80^{\circ} \mathrm{C}$, if $\mathrm{Ha}>0.02$, the diameter of the 4 -bromoanisole droplets should be bigger than 3000 nm . From the size distribution, it could be seen that the droplet size was always smaller than 1000 nm , and the reaction was therefore identified to be slow with respect to mass transfer. Thus, an intrinsic kinetic model could be developed.

Figure S2. 4-Bromoanisole droplets size distribution before and after reagents flow through the reactor and under $20^{\circ} \mathrm{C}, 70^{\circ} \mathrm{C}$

3. Reactor characterization

Experiments were performed to characterize the residence time distributions (RTDs) of the reactor. Illustration of the experimental setup is shown in figure S3. Water was used as the carrier fluid and was delivered to the reactor at volumetric flow rates of $33 \mu \mathrm{~L} / \mathrm{min}$, $50 \mu \mathrm{~L} / \mathrm{min}, 100 \mu \mathrm{~L} / \mathrm{min}, 133 \mu \mathrm{~L} / \mathrm{min} 200 \mu \mathrm{~L} / \mathrm{min}$ and $400 \mu \mathrm{~L} / \mathrm{min}$ using a Harvard syringe pump. Acetone was chosen as the tracer and was injected to the system through a microscale injector with an injection volume of $5 \mu \mathrm{~L}$. The acetone tracer monitored in-line by UV-Vis absorbance spectrometry at the outlet of reactor. Both deuterium and halogen lamps on the light source were used to warm up for at least 20 min before RTD experiments. The absorbance wavelength 277 nm were chosen to maximize the signal-tonoise ratio of the measurements. A picture of the experimental setup is shown in figure S4. UV absorbance at different carrier flow rates were record as a function of time.

Figure S3. Process flow diagram of the continuous in-line UV-Vis spectroscopy for RTDs measurement

Figure S4. Photo of RTD measurement experiments

The mean residence time τ was calculated by:

$$
\begin{equation*}
\tau=\frac{\int_{0}^{\infty} t A(t) d t}{\int_{0}^{\infty} A(t) d t} \tag{S3}
\end{equation*}
$$

where $A(t)$ is the tracer absorbance at 277 nm . The tracer was injected into the system at $\mathrm{t}=0$, and $\int_{0}^{\infty} A(t) d t$ is the area under the absorbance curve. With i an integer and l the total number of signals obtained in one RTD experiment, the area under the absorbance curve was calculated by:

$$
\begin{equation*}
\int_{0}^{\infty} A(t) d t=\sum_{i=1}^{i=l-1}\left(t_{i+1}-t_{i}\right) \times \frac{A_{i+1}+A_{i}}{2} \tag{S4}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\int_{0}^{\infty} t A(t) d t=\sum_{i=1}^{i=l-1} \frac{1}{t_{i}+t_{i+1}} 22\left(t_{i+1}-t_{i}\right) \times \frac{A_{i+1}+A_{i}}{2} \tag{S5}
\end{equation*}
$$

Then $C(t)$ was normalized to $E(\Theta)$ by,

$$
\begin{equation*}
E(\Theta)=\tau \times A(\Theta) \tag{S6}
\end{equation*}
$$

In which,

$$
\begin{align*}
& \Theta=\mathrm{t} / \tau \tag{S7}\\
& A(\Theta)=\frac{A(t)}{\int_{0}^{\infty} A(t) d t} \tag{S8}
\end{align*}
$$

The absorbance and their corresponding normalized RTD functions at different flow rates are shown in figures S5-S10.

Figure S5. UV-vis absorbance over time and normalized RTD functions at carrier volumetric flow rate $33 \mu \mathrm{~L} / \mathrm{min}$

Figure S6. UV-vis absorbance over time and normalized RTD functions at carrier volumetric flow rate $50 \mu \mathrm{~L} / \mathrm{min}$

Figure S7. UV-vis absorbance over time and normalized RTD functions at carrier volumetric flow rate $100 \mu \mathrm{~L} / \mathrm{min}$

Figure S8. UV-vis absorbance over time and normalized RTD functions at carrier volumetric flow rate $133 \mu \mathrm{~L} / \mathrm{min}$

Figure S9. UV-vis absorbance over time and normalized RTD functions at carrier volumetric flow rate $200 \mu \mathrm{~L} / \mathrm{min}$

Figure S10. UV-vis absorbance over time and normalized RTD functions at carrier volumetric flow rate $400 \mu \mathrm{~L} / \mathrm{min}$

The length to diameter ratio of the reactor is 10^{3}, which yields the Bodenstein number B_{o},

$$
\begin{equation*}
B_{o}=\frac{u d_{t}}{D} \tag{S9}
\end{equation*}
$$

where d_{t} is the diameter of the tubing, D is the diffusivity of bromoanisole in water at $80^{\circ} \mathrm{C}$, and u is the superficial velocity. Estimated values of B_{o} at different flow rates are listed in table S1.

Table S1. Bodenstein number B_{o} at different flow rates

Volumetric flow rate v_{0} $(\mu \mathrm{~L} / \mathrm{min})$	Superficial flow rate u $(\mathrm{~cm} / \mathrm{s})$	B_{o}
33	0.28	466.9
50	0.42	707.4
100	0.89	1414.7
133	1.13	1881.6
200	1.70	2829.4
400	3.40	5658.8

According to O. Levenspiel, for $L / d_{t}=10^{3}$, and B_{o} in the range of 10^{3}, the Taylor expression for the dispersion should be used ${ }^{3}$:

$$
\begin{equation*}
\boldsymbol{D}=\frac{u^{2} d_{t}^{2}}{192 D} \tag{S10}
\end{equation*}
$$

The extent of axial distribution was then measured by Levenspiel number $l v$:

$$
\begin{equation*}
l v=\frac{u L}{D} \tag{S11}
\end{equation*}
$$

where \boldsymbol{D} is the dispersion coefficient, u is the super facial velocity, and L is the reactor length. Combining (S10) and (S11), the relationship between the Levenspiel number and the velocity can be seen as,

$$
\begin{equation*}
l v=\frac{192 D L}{d_{t}^{2}} \cdot \frac{1}{u} \tag{S12}
\end{equation*}
$$

Indicating that the $l v$ number decreases as velocity increases, which is consistent with our findings.

Values of $l v$ were estimated by:

$$
\begin{equation*}
E(\Theta)_{\max }=\frac{1}{\sqrt{4 \pi \cdot \frac{1}{l v}}} \tag{S13}
\end{equation*}
$$

where $E(\Theta)_{\max }$ is the maximum value of $E(\Theta)$ at different flow rates. For flow rates from $33 \mu \mathrm{~L} / \mathrm{min}$ to $400 \mu \mathrm{~L} / \mathrm{min}$ (see figure S5-S10), $E(\Theta)_{\text {max }}$ ranges from 2-4. Values of $l v$ are then calculated to be 58.96 to 197.46. Values of Levenspiel number at different flow rates are shown in table S2. For $l v>50$, the dispersion causes insignificant impact on conversions. ${ }^{4}$ Thus flow in the reactor is considered as plug flow and the dispersion can be neglected.

Table S2. Estimated Levenspiel number $l v$ at different flow rates

Flow rate $(\mu \mathrm{L} / \mathrm{min})$	$E(\Theta)_{\max }$	Levenspiel number
33	3.964	197.46
50	3.855	186.75
100	3.267	134.12
133	3.174	126.60
200	2.350	69.40
400	2.166	58.96

Assuming plug flow, the reactor volume V was then evaluated by the mean residence time,

$$
\begin{equation*}
\mathrm{V}=v_{0} \tau \tag{S14}
\end{equation*}
$$

where v_{0} is the volumetric flow rate and τ is corresponding residence time. The value of V is $216.4 \pm 20 \mu \mathrm{~L}$. Dead volume of the RTD experiments setup is the connecting tubing before the reactor with 31 cm total length and $500 \mu \mathrm{~m}$ inner diameter (total volume 63 $\mu \mathrm{L}$), and an inline solvent filter with $12.3 \mu \mathrm{~L}$ swept volume. So, the reactor volume was measured to be $141.1 \pm 20 \mu \mathrm{~L}$.

4. Catalytic mechanism model fitting

According to the catalytic cycle, the rate of formation of 4-metoxybiphenyl at $20^{\circ} \mathrm{C}$ could be written as:

$$
\begin{equation*}
\frac{d c_{m}}{d \tau}=\frac{1}{\frac{1}{k_{1} \times c_{p d} \times c_{b}^{2}}+\frac{1}{k_{2} \times c_{p d} \times c_{\text {base }}^{2}}+\frac{1}{k_{3} \times c_{p d} \times c_{p}^{2}}+\frac{1}{k_{4} \times c_{p d}}} \tag{S15}
\end{equation*}
$$

where c_{m} is the concentration of product, τ is the mean residence time under different flow rates, c_{b} is the concentration of 4-bromoanisole, $c_{p d}$ is the concentration of catalyst in the reaction mixture, $c_{\text {base }}$ is the concentration of OH^{-}at $20^{\circ} \mathrm{C}$, and c_{p} is the concentration of phenylboronic acid.

For $20^{\circ} \mathrm{C}$, since there is dead volume before and after the reactor caused by 10 cm of tubing connecting to the mixer and 10 cm of tubing leading to the collection vial, the residence time at different flow rates were recalibrated by,

$$
\begin{equation*}
\tau=\frac{V_{\text {reactor }}+V_{\text {deadvolume }}}{v_{0}} \tag{S16}
\end{equation*}
$$

where $V_{\text {reactor }}$ is the volume of reactor equal to $100 \mu \mathrm{~L}, V_{\text {deadvolume }}$ is the summation of the $20 \mu \mathrm{~L}$ dead volume before the reactor and $20 \mu \mathrm{~L}$ dead volume after the reactor equal to $40 \mu \mathrm{~L}$, and finally v_{0} is experimental volumetric flow rate of $400 \mu \mathrm{~L} / \mathrm{min}, 200 \mu \mathrm{~L} / \mathrm{min}$, $133 \mu \mathrm{~L} / \mathrm{min}, 100 \mu \mathrm{~L} / \mathrm{min}, 50 \mu \mathrm{~L} / \mathrm{min}$, and $33 \mu \mathrm{~L} / \mathrm{min}$.

The concentration of 4-methoxy biphenyl was fitted to time t by using MATLAB nlinfit,

$$
\begin{equation*}
c_{m}=\alpha_{1} \times\left(1-\frac{1}{1+\alpha_{2} \times \tau}\right) \tag{S17}
\end{equation*}
$$

The fitted parameters were found to be $\alpha_{1}=0.2196, \alpha_{2}=0.5506$ with $R^{2}=0.93$.
Then values of the rate of formation of 4-methoxybiphenyl $r_{m 20}$ could be estimated by taking the derivative of 4-methoxybiphenyl concentration with respect to time,

$$
\begin{equation*}
r_{m 20}=\frac{\alpha_{1} \times \alpha_{2}}{\left(1+\alpha_{2} \times \tau\right)^{2}} \tag{S18}
\end{equation*}
$$

The experimental data was then fitted into the above relationship by MATLAB nlinfit and the determined values of rate constants are reported in table S 3 with $R^{2}=0.84$.

Table S3. Rate constants fitting results

Rate constant	Value	Unit
k_{1}	1.547×10^{4}	$L^{2} \mathrm{~mol}^{-2} \mathrm{~min}^{-1}$
k_{2}	1.023×10^{14}	$L^{2} \mathrm{~mol}^{-2} \mathrm{~min}^{-1}$
k_{3}	9.271×10^{12}	$L^{2} \mathrm{~mol}^{-2} \mathrm{~min}^{-1}$
k_{4}	1.518×10^{16}	$\mathrm{~min}^{-1}$

Since the rate constants of the transmetalation and the reductive elimination steps are several orders of magnitude larger than that of the oxidative addition step. The oxidative addition step is then considered to be the rate limiting step. The rate constants of the oxidative addition step at different conditions were then calculated.

The residence times after the mixing of reagents, at the end of the first dead volume, at the end of the effective reactor volume, and at the end of the second dead volume were $\tau=0, \tau=\tau_{1}, \tau=\tau_{2}$, and $\tau=\tau_{3}$, respectively. The corresponding 4-bromoanisole concentrations at above points were $c_{b 0}, c_{b 1}, c_{b 2}, c_{b}$. Here, $c_{b 0}$ is the initial concentration of 4 -bromoanisole in feeding stream, and c_{b} was measured by gas chromatography. The first dead volume, reactor volume, second dead volume were V_{1}, V_{r}, and V_{2}, respectively. The temperature in V_{1} and V_{3} were ambient temperature ($20^{\circ} \mathrm{C}$), whereas the temperatures in the reactor were $20,40,60$, and $80^{\circ} \mathrm{C}$. A configuration of the reactor with its dead volumes is shown in figure S11.

Figure S11. Configuration of reactor and its dead volumes

Assuming the Graetz-Nusselt heating and cooling of the microchannel is much faster than any residence time, the design equations with boundary conditions could be written as,

For $\tau=0$ to $\tau=\tau_{1}, T=20^{\circ} \mathrm{C}$:

$$
\begin{equation*}
\int_{c_{b 0}}^{c_{b 1}} \frac{d c_{b}}{c_{b}^{2}}=\int_{0}^{\tau_{1}}\left(-k_{20} c_{p d}\right) d \tau \tag{S19}
\end{equation*}
$$

For $\tau=\tau_{1}$ to $\tau=\tau_{2}, T=20,40,60,80^{\circ} \mathrm{C}$:

$$
\begin{equation*}
\int_{c_{b 1}}^{c_{b 2}} \frac{d c_{b}}{c_{b}^{2}}=\int_{\tau_{1}}^{\tau_{2}}\left(-k_{20 / 40 / 60 / 80} c_{p d}\right) d \tau \tag{S20}
\end{equation*}
$$

For $\tau=\tau_{2}$ to $\tau=\tau_{3}, T=20^{\circ} \mathrm{C}$:

$$
\begin{equation*}
\int_{c_{b 0}}^{c_{b 1}} \frac{d c_{b}}{c_{b}^{2}}=\int_{\tau_{2}}^{\tau_{3}}\left(-k_{20} c_{p d}\right) d \tau \tag{S21}
\end{equation*}
$$

where k_{20} is the rate constant of oxidative addition step at $20^{\circ} \mathrm{C}, k_{20 / 40 / 60 / 80}$ is the rate constant of oxidative addition step at $20,40,60$, and $80^{\circ} \mathrm{C}$, respectively.

Separation of variables and integration yields the relationship of c_{b} to τ at $20^{\circ} \mathrm{C}$:

$$
\begin{equation*}
c_{b}=\frac{1}{k_{20} c_{p d} \tau_{3}+\frac{1}{c_{b 0}}} \tag{S22}
\end{equation*}
$$

The value of k_{20} was then obtained by fitting c_{b} and τ into the above equation using MATLAB nlinfit.

The relationship of c_{b} to τ at $40,60,80^{\circ} \mathrm{C}$ were also obtained by combining the solutions of (S19) into (S20) and the result into (S21),

$$
\begin{equation*}
c_{b}=\frac{1}{k_{20} c_{p d} \tau_{1}+k_{40 / 60 / 80} c_{p d}\left(\tau_{2}-\tau_{1}\right)+k_{20} c_{p d}\left(\tau_{3}-\tau_{2}\right)+\frac{1}{c_{b 0}}} \tag{S23}
\end{equation*}
$$

The regressions were then solved by MATLAB nlinfit to obtain the rate constants for 40, $60,80^{\circ} \mathrm{C}$.

5. Activation energy estimation

Figure S12. Linear regression for the activation energy for oxidative addition step

6. Error of the activation energy:

According to propagation of uncertainty, error of rate constant ε_{k} could be calculated as,

$$
\begin{equation*}
\varepsilon_{k}=\left|-\frac{2}{c p d} \cdot r_{m} \cdot c_{b}^{-3}\right| \cdot\left|\varepsilon_{b}\right| \tag{S24}
\end{equation*}
$$

where r_{m} is the rate of formation of product at different temperatures. Values of ε_{k} were determined by the maximum errors.

Error of the activation energy was determined by the maximum error value calculated by the equation,

$$
\begin{equation*}
\varepsilon_{E}=\left|-R T \cdot \frac{1}{k}\right| \cdot\left|\varepsilon_{k}\right| \tag{S25}
\end{equation*}
$$

where k, ε_{k} are the rate constants fitted by nonlinear regression, and the corresponding errors at each temperature. k_{1} is the rate constant of oxidative addition step at each temperature, $\varepsilon_{k 1}$ is the maximum error of k_{1} at each temperature, and ε_{E} is the error of the activation energy of oxidative addition step at each temperature. Values of $k_{1}, \varepsilon_{k 1}$, ε_{E} are listed in table S 4 using a value of the gas constant $R=8.314 \mathrm{~J} /(\mathrm{mol} \cdot \mathrm{K})$. Error of the activation energy $\varepsilon_{E_{-} \text {total }}$ was then determined by the summation of ε_{E} at each temperature, and its value was estimated to be $4.7 \mathrm{~kJ} / \mathrm{mol}$.

Table S4. Errors of rate constant at each temperatures

Temperature (K)	$k_{1}\left(L^{2} \mathrm{~mol}^{-2} \mathrm{~s}^{-1}\right)$	$\varepsilon_{k 1}\left(L^{2} \mathrm{~mol}^{-2} \mathrm{~s}^{-1}\right)$	$\varepsilon_{E}\left(\mathrm{Jmol}^{-1}\right)$
293.15	317.46	88.56	681.5
313.15	741.33	267.98	941.2
333.15	3213.88	1773	1528.0
353.15	7637.94	3262	9940.4

7. Reaction at longer residence time for full conversion

Experiments at 10 min and 20 min residence times at $80^{\circ} \mathrm{C}$ were also carried out. As can be seen in Figure S13, the conversion reached $98.3 \pm 2.91 \%$ after 10 min of reaction.

Figure S13. 4-bromoanisole conversion for extended residence time at $80^{\circ} \mathrm{C}$

8. Heat transfer evaluation

For capillary reactors, the temperature profile of Graetz-Nusslet problem along $r=0$ predicts the heating time for fluid in the center in a reactor of length L where the heat flux at the wall is constant:

$$
\begin{equation*}
t=\frac{z}{2 v_{\text {avg }}}=\frac{\rho C_{p} R^{2}}{k} \tag{S26}
\end{equation*}
$$

In which z is the axial distance, $v_{\text {avg }}$ is the fluid velocity at the center of the tubing, ρ is the density of the fluid inside the tubing, at $20^{\circ} \mathrm{C}, 50 \%$ ethanol in water mixture density is $859.3 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}{ }^{5,6} . C_{p}$ is the heat capacity and is $11.46 \frac{\mathrm{~J}}{\mathrm{~K} \cdot \mathrm{~mol}}$ for our solvent system. ${ }^{7} \mathrm{k}$ is the thermal conductivity, at $66{ }^{\circ} \mathrm{C}$, its value of 50% ethanol in water is $0.329 \frac{\mathrm{~W}}{\mathrm{~m} \cdot \mathrm{~K}} .{ }^{8} \mathrm{R}$ is the tubing radius $250 \mu \mathrm{~m}$. The estimated maximum values of t is $0.0058 \mathrm{~s} \ll \tau_{\min }=15 \mathrm{~s}$.

References

1 C. R. Wilke and P. Chang, AIChE J., 1955, 1, 264-270.
2 J. M. P. Q. Delgado, J. Phase Equilibria Diffus., 2007, 28, 427-432.
3 O. Levenspiel, Chemical Reaction Engineering, John Willey \& Sons, Inc., 1999.
4 P. M. Witt, S. Somasi, I. Khan, et al., Chem. Eng. J., 2015, 278, 353-362.
5 P. Petong, R. Pottel and U. Kaatze, J. Phys. Chem. A, 2000, 104, 7420-7428.
6 W. J. Tropf and M. E. Thomas, in Handbook of Optical Constants of Solids, Elsevier, 1997, pp. 1079-1096.

7 G. C. Benson and P. J. D'Arcy, J. Chem. Eng. Data, 1982, 27, 439-442.
8 M. J. Assael, E. Charitidou, S. Avgoustiniatos and W. A. Wakeham, Int. J. Thermophys., 1989, 10, 1127-1140.

