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1 General Methods

Commercial reagents were used as received without further purification. Dichloromethane and tetrahydro-

furane were purified and dried using PureSolv MD 5 Solvent Purification System. Routine and characterisa-

tionNMR spectra were recorded onBruker 400MHzAvance IIIHDSmart Probe, 400MHz Smart Probe, and

400MHz Avance III HD Spectrometers at 298K and usingWilmard 5 mmThinWall Precision NMR sample

tubes. Characterisation spectra for ADAD were recorded by the NMR Service at the Department of Chem-

istry on 500 MHz DCH Cryoprobe and 400 MHz Neo Prodigy Spectrometers. 1H-1H DQF COSY, 1H-13C

HMBC, 1H-31P HMBC, and 13C-19F HMBC of ADAD were recorded with 35.5% Poisson gap non-uniform

sampling. 1H-13C HSQC, 13C-19F HSQC, and 13C-19F HMQC od ADAD were recorded with 25% Pois-

son gap non-uniform sampling. NMR dilutions were performed on Bruker 400 MHz Avance III HD Smart

Probe Spectrometer by adding aliquotes of a concentrated solution into pure solvent. Upon each addition,

the solution was manually shaken before acquiring the spectrum, which was sufficient time for equilibra-

tion to be reached. Variable temperature NMR experiments were performed on 500 MHz AVIII HD Smart

Probe Spectrometer. DOSY experiments were performed on Bruker 400 MHz Avance III HD Smart Probe

Spectrometer. The standard Bruker pulse program, ledbpgp2s, employing a stimulated echo and longitud-

inal eddy-current delay (LED) using bipolar gradient pulses for diffusion using 2 spoil gradients of 600 μs

was utilized. Rectangular gradients were used with a total duration of 3 ms. Gradient recovery delays were

200 μs. Diffusion times were 160 μs. Individual rows of the quasi-2D diffusion databases were phased and

baseline corrected. DOSY data analyses were performed using Bruker Dynamics Centre software, using area

integrals of manually selected peaks. Chemical shifts for 1H, 13C, 19F, and 31P are reported in ppm on the

δ scale; 1H and 13C were referenced to the residual solvent peak; 19F and 31P were unreferenced. Coupling

constants (J) are reported in hertz (Hz). The following abbreviations are used to describe signal multiplicity

for 1Hand 13CNMR spectra: s: singlet, d: doublet, t: triplet, m: multiplet, br: broad. High resolution electro-

spray ionization mass spectrometry (HRMS-ESI) was performed onWaters LCT Premier TOF Spectrometer

or by the Mass Spectrometry Service at the Department of Chemistry. Infrared (IR) spectra were recorded

on Bruker Alpha FTIR Spectrometer with single reflection diamond Platinum ATR. The liquid chromato-

graphy mass spectrometry (LC-MS) analysis of samples was performed using Waters Acquity H-class UPLC

coupled with a single quadrupole Waters SQD2. Acquity UPLC CSH C18 Column, 130Å, 1.7 μm, 2.1 mm X

50mmwas used as the UPLC column. The conditions of the UPLCmethod were as follows: solvent A: water

+0.1% Formic acid; solvent B: acetonitrile +0.1% formic acid; gradient of 0-2minutes 5% - 100%B + 1minute
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100%B with re-equilibration time of 2 minutes. Flow rate: 0.6 ml/min; column temperature of 40 ∘C; injec-

tion volume of 2 μL. The signal was monitored at 270 nm. Chromatographic separations were performed on

Teledyne ISCO CombiFlash Rf+UV-Vis and CombiFlash Rf+Lumen, using prepacked cartridges of silica (25

μm or 50 μm PuriFlash Columns). Separated mixtures were solid loaded using Celite or silica gel 60 (Merck,

40–63 μm). The signal was monitored at 254 nm, 270 nm, and (if CombiFlash Rf+Lumen) using evaporative

light scattering detector.

2 Synthesis

2.1 Synthesis of 3

A solution of previously reported compounds 1 (260 mg, 0.44 mmol) and 2 (215 mg, 0.44 mmol) in anhyd-

rous dichloromethane (5 ml) with N,N-dimethylaminopyridine (11 mg, 0.1 mmol) and EDC·HCl (101 mg,

0.5 mmol) were stirred overnight under nitrogen atmosphere.1 The mixture was poured into water (10 ml)

and the aqueous layer was extracted with dichloromethane (3 × 5ml). The combined organic extracts were

washed with brine (20 ml), dried with anhydrous magnesium sulfate, filtered and concentrated under va-

cuum. The residue was purified using column chromatography (0-100% ethyl acetate in petroleum ether) to

give compound 3 as a white wax (266 mg, 0.25 mmol, 57%).
1HNMR (400 MHz, CDCl3) δ 7.83 – 7.28 (m, 20H), 7.22 (d, J = 8.4 Hz, 2H), 6.71 (d, J = 8.4 Hz, 2H), 6.49 (d,

J = 8.3 Hz, 2H), 5.18 (s, 2H), 4.38 (br t, J = 6.1 Hz, 2H), 4.08 (s, 2H), 4.03 (s, 2H), 3.81 (br t, J = 6.1 Hz, 2H),

3.70 (br t, J = 6.1 Hz, 2H), 3.54 (br t, J = 6.1 Hz, 2H), 2.35 (s, 3H), 2.05 – 1.56 (m, 6H), 1.09 – 0.98 (m, 15H),

0.84 (d, J = 6.8 Hz, 6H) ppm.
13CNMR (101 MHz, CDCl3) δ 170.1 (d, J = 13 Hz), 168.7, 149.5, 147.0, 138.7, 135.2, 135.0, 132.7, 131.5 (d,

J = 10 Hz), 130.1, 129.4, 128.3, 128.2, 128.0, 128.0, 127.7, 127.4, 124.3, 124.1 (q, J = 5 Hz), 122.8 (q, J = 272

Hz), 119.3 (d, J = 100 Hz), 112.2, 111.0 (d, J = 12 Hz), 66.6, 61.9, 61.0, 53.0, 52.3 (d, J = 17 Hz), 49.9, 39.7 (d,

J = 68 Hz), 26.4, 24.4 (d, J = 9 Hz), 24.2 (d, J = 8 Hz), 23.1 (d, J = 4.0 Hz), 20.4, 18.7 ppm.
19FNMR (376 MHz, CDCl3) δ -61.9 ppm.
31PNMR(162 MHz, CDCl3) δ 41.2 ppm.

FT-IR (neat): 2955, 2925, 2894, 2862, 1772, 1745, 1598 cm−1.

HR-MS (ESI): m/z = 1063.4680 [M+H]+ (calcd. for C60H71F2N2O8PSi: 1063.4669, Δ 1.0 ppm).
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2.2 Synthesis of 7

Nitrogen gas was bubbled for 15min through a suspension of 3 (120mg, 0.1mmol) and palladium on carbon

(11 mg, 10 wt% loading, 0.01 mmol) in absolute ethanol (10 ml). Hydrogen gas was then purged for 15 min

through the suspension, which was subsequently left stirring under hydrogen atmosphere overnight. The

reactionmixture was filtered throughCelite, washedwith ethanol (3×15ml) and concentrated under vacuum

to give intermediate 4 (AD*-COOH) as a white foam (87 mg, 0.09 mmol, 90%).
1HNMR (400 MHz, CDCl3) δ 7.74 (d, J = 2.1 Hz, 1H), 7.65 (dd, J = 8.4, 2.1 Hz, 1H), 7.63 – 7.29 (m, 14H),

7.19 (d, J = 8.4 Hz, 1H), 6.71 (d, J = 8.5 Hz, 2H), 6.51 (d, J = 8.2 Hz, 2H), 4.36 (t, J = 5.8 Hz, 2H), 4.05 (s, 2H),

3.89 (s, 2H), 3.82 (t, J = 5.8 Hz, 2H), 3.60 (t, J = 5.8 Hz, 2H), 3.55 (t, J = 5.8 Hz, 2H), 2.34 (s, 3H), 2.27 (br s,

1H), 2.04 – 1.63 (m, 6H), 1.02 (s, 9H), 0.99 (d, J = 6.6 Hz, 6H), 0.87 (d, J = 6.5 Hz, 6H) ppm.

HR-MS (ESI): m/z = 973.4228 [M+H]+ (calcd. for C53H65N2O8F3PSi: 973.4200, Δ 2.9 ppm).

In parallel, a solution of compound 3 (120mg, 0.1mmol) in anhydrous tetrahydrofuran (5ml) with acetic

acid (52 µl, 0.9 mmol) and n-tetrabutylammonium acetate (170 µl, 1 m in THF, 0.17 mmol) was stirred under

nitrogen atmosphere overnight. Upon completion, the reaction mixture was diluted with water (10 ml) and

extracted with ethyl acetate (3 × 10ml). The combined organic extracts were washed with brine (10 ml),

dried with anhydrous magnesium sulfate, filtered and concentrated under vacuum. The residue was filtered

through a pad of silica (90% ethyl acetate in petroleum ether, then 5% methanol in dichloromethane) to give

intermediate 5 (HO-AD*) as a white foam (69 mg, 0.08 mmol, 76%).
1HNMR (400 MHz, CDCl3) δ 7.78 (d, J = 2.2 Hz, 1H), 7.70 (dd, J = 8.4, 2.3 Hz, 1H), 7.48 – 7.40 (m, 4H),

7.36 – 7.32 (m, 5H), 7.24 (d, J = 10.1 Hz, 3H), 6.75 (d, J = 8.7 Hz, 2H), 6.61 – 6.57 (m, 2H), 5.20 (s, 2H), 4.46

(t, J = 5.9 Hz, 2H), 4.15 (s, 2H), 4.09 (s, 2H), 3.78 (t, J = 5.7 Hz, 4H), 3.60 (m, 4H), 3.17 (s, 1H), 2.35 (s, 3H),

2.03 – 1.61 (m, 6H), 1.01 (d, J = 6.6 Hz, 6H), 0.84 (d, J = 6.4 Hz, 6H) ppm.

HR-MS (ESI): m/z = 825.3525 [M+H]+ (calcd. for C44H53F3N2O8P: 825.3492, Δ 4.0 ppm).
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A solution of intermediates 4 (87 mg, 0.09 mmol) and 5 (69 mg, 0.08 mmol) in anhydrous dichlorometh-

ane (5 ml) with N,N-dimethylaminopyridine (11 mg, 0.1 mmol) and EDC·HCl (101 mg, 0.5 mmol) were

stirred overnight under nitrogen atmosphere. The mixture was poured into water (10 ml) and the aqueous

layer was extracted with dichloromethane (3× 5ml). The combined organic extracts were washed with brine

(20 ml), dried with anhydrous magnesium sulfate, filtered and concentrated under vacuum. The residue was

filtered through a pad of silica silica (60%, then 100% ethyl acetate in petroleum ether) to give compound 6

as a white wax (141 mg, 0.08 mmol, 99%).
1HNMR (400 MHz, CDCl3) δ 7.74 (m, 2H), 7.61 – 7.56 (m, 5H), 7.48 – 7.27 (m, 20H), 7.23 – 7.20 (m, 2H),

6.69 (d, J = 8.8 Hz, 2H), 6.67 – 6.61 (m, 4H), 6.49 – 6.45 (m, 2H), 5.16 (s, 2H), 4.40 – 4.27 (m, 6H), 4.07 (s,

2H), 4.03 (s, 2H), 3.98 (s, 2H), 3.94 (s, 2H), 3.80 (t, J = 5.9 Hz, 2H), 3.69 (t, J = 6.0 Hz, 2H), 3.62 (m, 4H), 3.53

(t, J = 5.7 Hz, 2H), 2.33 (s, 6H), 2.02 – 1.56 (m, 12H), 1.02 – 0.95 (m, 21H), 0.82 (d, J = 6.6 Hz, 12H) ppm.

HR-MS (ESI): m/z = 1779.7497 [M+H]+ (calcd. for C97H115O15N4F6P2Si: 1779.7502, Δ -0.3 ppm).
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δr/rppm
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Fig. S1 Stack of 1H NMR spectra (CDCl3, 298K) of intermediates 3 - 6. Chemical shifts of the TBDPS and benzyl
protecting groups, removed in the subsequent steps, are highlighted with dashed lines. Ester methylene region, where
a new peak appears after EDC coupling, is highlighted in grey.
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A portion of intermediate 6 (35 mg, 0.02 mmol) and ammonium acetate (38.5 mg, 0.5 mmol) were dis-

solved in a mixture of methanol (1 ml) and water (0.25 ml). The reaction mixture was stirred under nitrogen

atmosphere overnight. After completion, the mixture was partitioned between water (20 ml) and ethyl acet-

ate (10 ml). The layers were separated and the aqueous layer was subsequently washed with ethyl acetate

(3 × 10ml). The combined organic extracts were washed with brine (10 ml). The washed solution was dried

with anhydrous magnesium sulfate, filtered and concentrated under vacuum. The residue was purified using

column chromatography (0-20% methanol in ethyl acetate) to yield to yield compound 4.17 as a colourless

oil (13 mg, 0.01 mmol, 38%).
1HNMR (500 MHz, CDCl3) δ 10.43 (s, 1H), 9.38 (s, 1H), 7.66 – 7.53 (m, 8H), 7.47 – 7.24 (m, 19H), 7.16 (d,

J = 8.5 Hz, 1H), 7.10 (d, J = 8.5 Hz, 1H), 6.66 (d, J = 8.5 Hz, 2H), 6.59 – 6.52 (m, 4H), 6.41 (d, J = 6.8 Hz, 2H),

5.15 (s, 2H), 4.36 (t, J = 5.1 Hz, 2H), 4.29 (t, J = 5.6 Hz, 2H), 4.18 (t, J = 5.4 Hz, 2H), 4.02 (s, 2H), 3.98 (s, 2H),

3.90 (s, 2H), 3.80 (t, J = 5.5 Hz, 2H), 3.80 (s, 2H), 3.68 (t, J = 5.1 Hz, 2H), 3.56 (t, J = 5.6 Hz, 2H), 3.52 (t, J =

5.5 Hz, 2H), 3.46 (t, J = 5.4 Hz, 2H), 2.08 – 1.49 (m, 12H), 1.01 (s, 9H), 0.99 (d, J = 6.6 Hz, 6H), 0.97 (d, J =

6.6 Hz, 6H), 0.83 (d, J = 6.6 Hz, 6H), 0.80 (d, J = 6.6 Hz, 6H) ppm.
13CNMR (126MHz, CDCl3) δ 170.7, 170.6, 170.3, 170.1, 155.1, 154.5, 150.1 (d, J = 2 Hz), 149.8 (d, J = 2 Hz),

146.7, 146.4, 135.5, 135.4, 133.0, 131.9 (d, J = 10 Hz), 131.8 (d, J = 10 Hz), 131.5, 131.0, 130.7, 130.4, 129.8,

129.6, 129.5, 128.6, 128.4, 128.3, 127.7, 127.5, 127.3, 124.2 (q, J = 273.1 Hz), 124.2 (q, J = 273.1 Hz), 124.1 (d,

J = 5 Hz), 124.1 (d, J = 5 Hz), 119.5 (d, J = 101 Hz), 118.2 (d, J = 102 Hz), 118.0 (d, J = 5 Hz), 117.0 (q, J = 30

Hz), 116.7 (q, J = 30 Hz), 112.6, 112.4, 111.7 (d, J = 12 Hz), 111.5 (d, J = 12 Hz), 66.9, 62.3, 62.0, 61.3, 53.4,

52.5, 52.3, 52.1, 51.9, 50.1, 50.0, 49.8, 39.7 (d, J = 68 Hz), 39.7 (d, J = 68 Hz), 29.7, 24.7 (d, J = 9 Hz), 24.7 (d,

J = 9 Hz), 24.5 (d, J = 8 Hz), 24.5 (d, J = 8 Hz), 23.4 (d, J = 4 Hz), 19.0 ppm.
19FNMR (376 MHz, CDCl3) δ -61.7, -61.9 ppm.
31PNMR(162 MHz, CDCl3) δ 41.9, 41.1 ppm.

FT-IR (neat): 2955, 2918, 2850, 1740, 1612, 1598 cm−1.

HR-MS (ESI): m/z = 1695.7255 [M+H]+ (calcd. for C93H111O13N4F6P2Si: 1695.7291, Δ -2.1 ppm).
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Fig. S3 Aliphatic region of the 1H-1HDQFCOSY (500MHz, CDCl3, 298K, ca. 5mm) spectrum of theADAD 4-mer.
Cross-peaks corresponding to different residues are distinguished with colours and Greek letters. The substructure
shows the highlighted correlations.
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Fig. S9 Structures of AA andDD which cannot form hydrogen bonds and were used as the reference compounds for
the backbone chemical shifts. Labelling corresponds to the labels of the equivalentADAD residues. Unlabelled protons
are not equivalent to any ADAD residues.
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Fig. S10 Aliphatic region of the 1H NMR (CDCl3, 298K) spectra of DD (400MHz, ca. 5mm), AA (400MHz, ca.
1mm), and ADAD (500MHz, ca. 5mm). Signals of the 2-mers are labelled using the corresponding ADAD labels.
Unlabelled signals are not equivalent to any ADAD residues.
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3 Melting experiments: Further Details

Two-State Melting Equilibrium

The resulting best fits of the two-state melting isochore to the variable temperature 19F NMR data are shown

in Fig. S11 (a). The 19F NMR chemical shift of the outer ADAD donor residue in the fully denatured state

(−57.7 ppm) is not consistent with the values from the dilution experiments, where the chemical shift for the

monomericAD and the inner residues of monomericADADwas around −59 ppm. The chemical shifts of all

donor residues in fully assembled dimers of bothAD andADAD converged to the same value of −60.8 ppm,

which is consistent with the dilution experiments. Therefore, we decided to fix the values of the complexation-

induced limiting chemical shifts inADAD to be equal to those of AD, but the resulting best-fit isochores (see

Figure Fig. S11 (b)) did not model the experimental data well. These results suggest that the simple two-state

melting equilibrium does not explain the behaviour of ADAD.
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Fig. S11 Fitting of two-state equilibrium isochores to the 19F NMR melting experiments of AD (red) and ADAD
(outer 19F green, inner 19F blue) in TCE. (a) Four-parameters model with no constraints. (b) Monomer and dimer
ADAD chemical shifts constrained to those of AD.

Three-State Melting Equilibrium

We assumed that the melting of theADAD dimer proceeds through a highly populated intermediate I, giving

a three-state equilibrium:

ADAD·ADAD
K1(T,ΔH1,Tm,1)

−−−−−−−−−−−−→←−−−−−−−−−−−− 2 I (1)

I
K2(T,ΔH2,Tm,2)

−−−−−−−−−−−−→←−−−−−−−−−−−− ADAD (2)

14



The chemical shifts of the fully bound and fully denatured strands were found to be consistent across all

species when no constraints were imposed on the model (see Figure Fig. S12 (a)). In order to reduce the

number of model parameters, we fixed the values of the limiting complexation-induced chemical shifts in

ADAD to be equal to those of AD. The resulting best-fit isochores are shown in Figure Fig. S12 (b) and the

thermodynamic fitting parameters are shown in Table S1. Melting temperatures for the two processes agree

with the trends observed in the data. The enthalpy of melting for the intermolecular process ΔH1 was found

to be comparable with the value for the dissociation of AD, while the observed enthalpy of unfolding ΔH2

was unexpectedly large for breaking of one hydrogen bond.
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Fig. S12 Fitting of three-state equilibrium isochores to the 19F NMR melting experiments of AD (red) and ADAD
(outer 19F green, inner 19F blue) in TCE. (a) Seven-parameters model with no constraints. (b) Monomer and dimer
ADAD chemical shifts constrained to be equal to those of AD.

Table S1 Thermodynamic parameters from NMRmelting experiments on ADAD in TCE-d2 at 7.4mm.

Complex δkiss / ppm δloop / ppm δstrand / ppm Tm,1 / K Tm,2 / K ΔH1 / kJmol−1 ΔH2 / kJmol−1

AD·AD −60.9 — −58.7 321 — 38.8 —

ADAD·ADAD (inner) −60.9§ −58.9 −58.7§ 324 404 31.4 37.1ADAD·ADAD (outer) −60.9§ −59.6 −58.7§
§ Parameter values fixed in the non-linear least-squares fit to be equal to the values for AD.
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4 Dimerisation Isotherm Derivation and Implementation

Equilibrium constant KM·M the dimerisation of a self-complementary monomerM to formM·M is:

2M
KM·M−−−−→←−−−− M·M (3)

KM·M = [M·M]
[M]2 (4)

where [M] and [M·M], are the equilibrium concentrations of the freemonomer and the dimer. Assuming that

no other equilibria occur in the mixture, the total concentration of the dimerising molecule [M]0is simply:

[M]0 = [M] + 2[M·M] (5)

Hence, the equilibrium constant KM·M can alternatively expressed as:

KM·M = [M·M]

([H]0 − 2[M·M])
2 (6)

which can be easily rearranged to give a quadratic in [M·M]:

[M·M]2 − [M·M] ([M]0 + 1
4KM·M ) + 1

4
[M]20 = 0 (7)

Equation 7 has only one physically meaningful root:

[M·M] = 1
2 ([M]0 + 1

4KM·M ) − 1
2√([M]0 + 1

4KM·M )
2

− [M]20 (8)

which gives the molar fraction of the dimer χM·M as:

χM·M = 2[M·M]
[M]0

= 1 + 1
4[M]0KM·M

− √(1 + 1
4[M]0KM·M )

2
− 1 (9)

In the fast-exchange regime of NMR spectroscopy, the observed chemical shift δobs is a weighted average of

the signals arising from all species present in solution:

δobs = δM
[M]
[M]0

+ δM·M
2[M·M]

[M]0
= δM(1 − χM·M) + δM·MχM·M (10)
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where δM and δM·M are the chemical shifts corresponding to the free M and the fully boundM·M complex,

respectively. A model defined by Equations (9) and (10) can be fitted to the NMR data with KM·M, δM·M, and

δM as parameters, using lmfit package in Python.2

Values in the text are quoted as arithmetic means and the errors were estimated as 95% confidence inter-

vals based on at least two repetitions.

1 # FITTING DIMERISATION ISOTHERM TO NMR DILUTION DATA
2 # Non-linear regression done using lmfit
3 # https://lmfit.github.io/lmfit-py/model.html
4

5 from lmfit import Parameters, Model
6

7 # Define model parameters with initial values
8 # add with tuples: (NAME VALUE VARY MIN MAX EXPR BRUTE_STEP)
9

10 params = Parameters()
11 params.add_many ((’K’, 100, True, None, None, None, None),
12 (’d_bound’, -70, True, None, None, None),
13 (’d_free’, -50, True, None, None, None, None))
14

15 # Molar fraction from the two-state dimerisation equilibrium
16

17 def alpha(c, K):
18 return (1 + 1/(4*K*c) - np.sqrt((1 + 1/(4*K*c))*(1 + 1/(4*K*c)) - 1))
19

20 # MODEL FUNCTION: Observed chemical shift (weighted average)
21

22 def d_obs(c, K, d_bound, d_free):
23 return d_bound * alpha(c, K) + d_free * (1 - alpha(c,K))
24

25 # Fitting parameters to the data
26 # xvalues : dataframe containing total concentration (M)
27 # yvalues : dataframe containing observed chemical shifts (ppm)
28 # List of minimisation methods: https://lmfit.github.io/lmfit-py/fitting.html
29 # Default minimisation method=’leastsq’ is Levenberg-Marquardt algorithm
30 # Here by default use robust Nelder-Mead method
31 # and then estimate confidence interval from L-M covariance matrix
32 # results : contains best fit parameters
33

34 model = Model(d_obs)
35 results = model.fit(yvalues, params, c=xvalues, method=’nelder’)
36 results2 = model.fit(yvalues, params=results.params, c=xvalues, method=’leastsq’)
37

38 # Print best fit parameters and fit statistics
39

40 print(results.fit_report() + ’\n’ + results2.fit_report())
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4.1 AD Dimerisation Isotherm in Chloroform - Repetition 1
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Fig. S13 Best fit dimerisation isotherm for AD chloroform-d at 298K against the original data.

[[Fit Statistics]]
# fitting method = leastsq
# function evals = 7
# data points = 24
# variables = 5
chi-square = 4.0579e-04
reduced chi-square = 2.1358e-05
Akaike info crit = -253.705261
Bayesian info crit = -247.814992

[[Variables]]
K: 170.751051 +/- 3.87320408 (2.27%) (init = 170.7511)
d_freeP1: 38.6571557 +/- 0.00653719 (0.02%) (init = 38.65716)
d_freeF1: -60.7426747 +/- 0.00218359 (0.00%) (init = -60.74267)
d_boundP1: 41.6223575 +/- 0.02004244 (0.05%) (init = 41.62236)
d_boundF1: -62.0914041 +/- 0.01230236 (0.02%) (init = -62.0914)

[[Correlations]] (unreported correlations are < 0.100)
C(K, d_boundP1) = -0.929
C(K, d_boundF1) = 0.894
C(K, d_freeP1) = -0.853
C(d_boundP1, d_boundF1) = -0.830
C(d_freeP1, d_boundF1) = -0.762
C(d_freeP1, d_boundP1) = 0.641
C(K, d_freeF1) = 0.507
C(d_freeF1, d_boundP1) = -0.471
C(d_freeP1, d_freeF1) = -0.433
C(d_freeF1, d_boundF1) = 0.214
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AD Dimerisation Isotherm in Chloroform - Repetition 2
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Fig. S14 Best fit dimerisation isotherm for AD chloroform-d at 298K against the original data.

[[Fit Statistics]]
# fitting method = leastsq
# function evals = 7
# data points = 24
# variables = 5
chi-square = 1.9344e-04
reduced chi-square = 1.0181e-05
Akaike info crit = -271.486881
Bayesian info crit = -265.596612

[[Variables]]
K: 194.406549 +/- 3.08573494 (1.59%) (init = 194.4065)
d_freeP1: 38.6983112 +/- 0.00407552 (0.01%) (init = 38.69831)
d_freeF1: -60.7569883 +/- 0.00149070 (0.00%) (init = -60.75699)
d_boundP1: 41.6546294 +/- 0.01531812 (0.04%) (init = 41.65463)
d_boundF1: -62.0986771 +/- 0.00891236 (0.01%) (init = -62.09868)

[[Correlations]] (unreported correlations are < 0.100)
C(K, d_boundP1) = -0.941
C(K, d_boundF1) = 0.895
C(d_boundP1, d_boundF1) = -0.843
C(K, d_freeP1) = -0.805
C(d_freeP1, d_boundF1) = -0.721
C(d_freeP1, d_boundP1) = 0.599
C(K, d_freeF1) = 0.485
C(d_freeF1, d_boundP1) = -0.456
C(d_freeP1, d_freeF1) = -0.390
C(d_freeF1, d_boundF1) = 0.190
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4.2 ADAD Dimerisation Isotherm in Chloroform - Repetition 1
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Fig. S15 Best fit dimerisation isotherm for ADAD chloroform-d at 298K against the original data.

[[Fit Statistics]]
# fitting method = leastsq
# function evals = 11
# data points = 48
# variables = 9
chi-square = 0.00235235
reduced chi-square = 6.0317e-05
Akaike info crit = -458.329984
Bayesian info crit = -441.489175

[[Variables]]
K: 488.092215 +/- 14.3160988 (2.93%) (init = 488.0922)
d_freeP1: 41.7192611 +/- 0.00720932 (0.02%) (init = 41.71926)
d_freeF1: -60.8507328 +/- 0.00377699 (0.01%) (init = -60.85073)
d_freeP2: 38.7203650 +/- 0.01242313 (0.03%) (init = 38.72036)
d_freeF2: -62.0368213 +/- 0.00335155 (0.01%) (init = -62.03682)
d_boundP1: 41.9217981 +/- 0.01093760 (0.03%) (init = 41.9218)
d_boundF1: -62.0945051 +/- 0.01350667 (0.02%) (init = -62.09451)
d_boundP2: 42.1200140 +/- 0.02564677 (0.06%) (init = 42.12001)
d_boundF2: -61.8924296 +/- 0.00788421 (0.01%) (init = -61.89243)

[[Correlations]] (unreported correlations are < 0.100)
C(K, d_boundP2) = -0.906
C(K, d_boundF1) = 0.817
C(K, d_freeP2) = -0.816
C(d_freeP1, d_boundP1) = -0.800
C(d_boundF1, d_boundP2) = -0.741
C(d_freeP2, d_boundF1) = -0.667
C(d_freeF2, d_boundF2) = -0.600
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C(d_freeP2, d_boundP2) = 0.539
C(K, d_freeF1) = 0.464
C(d_freeF1, d_boundP2) = -0.421
C(d_freeF1, d_freeP2) = -0.379
C(K, d_boundF2) = -0.163
C(d_boundP2, d_boundF2) = 0.147
C(d_boundF1, d_boundF2) = -0.133
C(d_freeP2, d_boundF2) = 0.133
C(K, d_boundP1) = -0.127
C(d_boundP1, d_boundP2) = 0.115
C(d_boundP1, d_boundF1) = -0.103
C(d_freeP2, d_boundP1) = 0.103
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ADAD Dimerisation Isotherm in Chloroform - Repetition 2
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Fig. S16 Best fit dimerisation isotherm for ADAD chloroform-d at 298K against the original data.

[[Fit Statistics]]
# fitting method = leastsq
# function evals = 31
# data points = 48
# variables = 9
chi-square = 0.02959961
reduced chi-square = 7.5896e-04
Akaike info crit = -336.777371
Bayesian info crit = -319.936562

[[Variables]]
K: 495.830100 +/- 73.8830006 (14.90%) (init = 484.9741)
d_freeP1: 41.7102884 +/- 0.02846814 (0.07%) (init = 41.71096)
d_freeF1: -60.8481837 +/- 0.01435614 (0.02%) (init = -60.84942)
d_freeP2: 38.9861245 +/- 0.06450579 (0.17%) (init = 38.99468)
d_freeF2: -62.0366674 +/- 0.01177332 (0.02%) (init = -62.03652)
d_boundP1: 41.9579335 +/- 0.04448221 (0.11%) (init = 41.95911)
d_boundF1: -62.0758085 +/- 0.06439811 (0.10%) (init = -62.08438)
d_boundP2: 42.0497488 +/- 0.10360027 (0.25%) (init = 42.06384)
d_boundF2: -61.8941770 +/- 0.02943287 (0.05%) (init = -61.89318)

[[Correlations]] (unreported correlations are < 0.100)
C(K, d_boundP2) = -0.906
C(K, d_freeP2) = -0.900
C(K, d_boundF1) = 0.895
C(d_boundF1, d_boundP2) = -0.811
C(d_freeP2, d_boundF1) = -0.806
C(d_freeP1, d_boundP1) = -0.803
C(d_freeP2, d_boundP2) = 0.658
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C(d_freeF2, d_boundF2) = -0.583
C(K, d_freeF1) = 0.576
C(d_freeF1, d_boundP2) = -0.522
C(d_freeF1, d_freeP2) = -0.519
C(d_freeF1, d_boundF1) = 0.290
C(K, d_boundF2) = -0.227
C(d_boundP2, d_boundF2) = 0.206
C(d_freeP2, d_boundF2) = 0.205
C(d_boundF1, d_boundF2) = -0.204
C(K, d_boundP1) = -0.171
C(K, d_freeP1) = -0.165
C(d_boundP1, d_boundP2) = 0.155
C(d_freeP2, d_boundP1) = 0.154
C(d_boundP1, d_boundF1) = -0.153
C(d_freeP1, d_boundP2) = 0.149
C(d_freeP1, d_freeP2) = 0.148
C(d_freeP1, d_boundF1) = -0.148
C(d_freeF1, d_boundF2) = -0.131
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4.3 AD Dimerisation Isotherm in TCE - Repetition 1
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Fig. S17 Best fit dimerisation isotherm for AD TCE-d2 at 298K against the original data.

[[Model]]
Model(d_obs)

[[Fit Statistics]]
# fitting method = leastsq
# function evals = 5
# data points = 15
# variables = 3
chi-square = 8.4285e-05
reduced chi-square = 7.0237e-06
Akaike info crit = -175.340371
Bayesian info crit = -173.216220

[[Variables]]
K: 198.493145 +/- 6.40093251 (3.22%) (init = 198.4932)
d_bound: -60.3982722 +/- 0.01701657 (0.03%) (init = -60.39827)
d_free: -59.2242828 +/- 0.00134973 (0.00%) (init = -59.22428)

[[Correlations]] (unreported correlations are < 0.100)
C(K, d_bound) = 0.968
C(K, d_free) = 0.688
C(d_bound, d_free) = 0.558
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AD Dimerisation Isotherm in TCE - Repetition 2
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Fig. S18 Best fit dimerisation isotherm for AD TCE-d2 at 298K against the original data.

[[Fit Statistics]]
# fitting method = leastsq
# function evals = 5
# data points = 11
# variables = 3
chi-square = 1.9244e-04
reduced chi-square = 2.4055e-05
Akaike info crit = -114.489807
Bayesian info crit = -113.296122

[[Variables]]
K: 224.029446 +/- 15.9937148 (7.14%) (init = 224.0292)
d_freeF1: -59.2135095 +/- 0.00355377 (0.01%) (init = -59.21351)
d_boundF1: -60.3313485 +/- 0.03282292 (0.05%) (init = -60.33135)

[[Correlations]] (unreported correlations are < 0.100)
C(K, d_boundF1) = 0.969
C(K, d_freeF1) = 0.751
C(d_freeF1, d_boundF1) = 0.622

25



4.4 ADAD Dimerisation Isotherm in TCE - Repetition 1
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Fig. S19 Best fit dimerisation isotherm for ADAD TCE-d2 at 298K against the original data.

[[Model]]
Model(d_obs)

[[Fit Statistics]]
# fitting method = leastsq
# function evals = 5
# data points = 14
# variables = 3
chi-square = 1.7440e-04
reduced chi-square = 1.5855e-05
Akaike info crit = -152.104651
Bayesian info crit = -150.187479

[[Variables]]
K: 370.076582 +/- 15.6088765 (4.22%) (init = 370.0765)
d_bound: -60.3197208 +/- 0.01598141 (0.03%) (init = -60.31972)
d_free: -59.2608510 +/- 0.00258315 (0.00%) (init = -59.26085)

[[Correlations]] (unreported correlations are < 0.100)
C(K, d_bound) = 0.948
C(K, d_free) = 0.760
C(d_bound, d_free) = 0.592
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ADAD Dimerisation Isotherm in TCE - Repetition 2
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Fig. S20 Best fit dimerisation isotherm for ADAD TCE-d2 at 298K against the original data.

[[Fit Statistics]]
# fitting method = leastsq
# function evals = 38
# data points = 28
# variables = 5
chi-square = 8.2846e-04
reduced chi-square = 3.6020e-05
Akaike info crit = -281.988120
Bayesian info crit = -275.327098

[[Variables]]
K: 306.798818 +/- 21.6241378 (7.05%) (init = 147.7316)
d_freeF2: -60.2044593 +/- 0.00247974 (0.00%) (init = -60.20388)
d_freeF1: -59.2908028 +/- 0.00363780 (0.01%) (init = -59.31508)
d_boundF2: -60.1695750 +/- 0.00864069 (0.01%) (init = -60.15501)
d_boundF1: -60.3484897 +/- 0.02968463 (0.05%) (init = -60.73865)

[[Correlations]] (unreported correlations are < 0.100)
C(K, d_boundF1) = 0.957
C(K, d_freeF1) = 0.732
C(d_freeF2, d_boundF2) = -0.620
C(d_freeF1, d_boundF1) = 0.577
C(K, d_boundF2) = -0.108
C(d_boundF2, d_boundF1) = -0.104
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5 Two-State Melting Isochore Derivation and Implementation

For a two-state melting equilibrium of a dimericM·M into a self-complementary monomerM:

M·M
KM·M(T,ΔH,Tm)

−−−−−−−−−−−−→←−−−−−−−−−−−− 2M (11)

the molar fractions for each species at a given temperature T are:

χM·M(T) = 2[M·M](T)
[M]0

(12)

χM(T) = [M](T)
[M]0

= 1 − χM·M(T) (13)

where [M]0 is the total concentration of M in all forms. The equilibrium constant for the melting reaction at

temperature T can be written in terms of the molar fraction of the dimer as:

K(T) = [M]2(T)
[M·M](T) =

2[M]0(1 − χM·M(T))2

χM·M(T) (14)

Differentiating the reaction isotherm equation (ΔG = −RT lnK) with respect to T−1, under the assumption

that ΔH and ΔS are independent of temperature, yields the van’t Hoff equation:

d lnK(T)
d (1/T) = −ΔH

R
(15)

Integrating Equation (15) between a range of temperatures T1 and T2 gives:

ln
K(T1)
K(T2) = −ΔH

R (
1
T1

− 1
T2 ) (16)

K(T1) = K(T2) exp{−ΔH
R (

1
T1

− 1
T2 )} (17)

At the melting temperature Tm, half of M exists asM·M and hence χM·M(Tm) = χM(Tm) = 0.5:

K(Tm) =
2 × (1 − 0.5)2 × [M]0

0.5 = [M]0 (18)
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which provides the dimerisation melting isochore:

K(T) = 1
[M]0

exp{−ΔH
R (

1
T

− 1
Tm )} (19)

The observed chemical shift δobs is a weighted average for all species in fast exchange:

δobs(T) = δMχM(T) + δM·MχM·M(T) (20)

which can be combined with Equation (13) to yield:

δobs(T) = δM(1 − χM·M(T)) + δM·MχM·M(T) (21)

Following standard dimerisation argument (see Subsection 4), χM·M(T) can be expressed as:3

χM·M = 2[M·M](T)
[M]0

= 1 + KM·M(T)
4[M]0

− √(1 + KM·M(T)
4[M]0 )

2
− 1 (22)

A model defined by Equations (19), (21), and (22) can then fitted to the data obtained from a variable

temperature 19F experiment with ΔH, Tm, δM·M, and δM as parameters, using lmfit package in Python.2

Analysis was performed in Jupyter and the results were plotted usingmatplotlib.4,5
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1 # FITTING TWO-STATE ISOCHORE TO VT NMR DATA
2 # Non-linear regression done using lmfit
3 # https://lmfit.github.io/lmfit-py/model.html
4

5 from lmfit import Parameters, Model
6 import numpy as np
7 import pandas as pd
8

9 # Define model parameters with initial values
10 # c : float containing total concentration (M)
11 # R : universal gas constant (J / mol K)
12

13 c = 0.00744
14 R = 8.314
15

16 params = Parameters()
17 params.add_many((’dH’, 38800, True, None, None, None, None),
18 (’Tm’, 298, True, None, None, None, None),
19 (’d_bound’, -60.860, True, None, None, None, None),
20 (’d_free’, -58.653, True, None, None, None, None))
21

22 # Equilibrium constant from integrated van’t Hoff equation
23

24 def K(T, dH, Tm):
25 return c * np.exp(-dH/R*(1/T-1/Tm))
26

27 # Molar fraction from two-state equilibrium constant
28

29 def alpha(T, dH, Tm):
30 return (4*c + K(T, dH, Tm) - np.sqrt((4*c + K(T, dH, Tm))* \
31 (4*c + K(T, dH, Tm)) - 16*c*c))/(4*c)
32

33 # MODEL FUNCTION: Observed chemical shift (weighted average)
34

35 def d_obs(T, dH, Tm, d_bound, d_free):
36 return alpha(T, dH, Tm)*d_bound + (1-alpha(T, dH, Tm))*d_free
37

38 # Fitting parameters to the data
39 # T : dataframe containing sample temperatures (K)
40 # d_F : dataframe containing observed chemical shifts (ppm)
41 # results : contains best fit parameters
42

43 model = Model(d_obs)
44 results = model.fit(d_F, params, T=T, method=’nelder’)
45 results2 = model.fit(d_F, results.params, T=T, method=’leastsq’)
46

47 print(results.fit_report() + ’\n’ + results2.fit_report())
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5.1 AD Two-State Melting Isochore

[[Model]]
Model(d_obs)

[[Fit Statistics]]
# fitting method = leastsq
# function evals = 6
# data points = 16
# variables = 4
chi-square = 2.6534e-04
reduced chi-square = 2.2111e-05
Akaike info crit = -168.113666
Bayesian info crit = -165.023311

[[Variables]]
dH: 38863.2239 +/- 474.119538 (1.22%) (init = 38863.23)
Tm: 321.141995 +/- 0.39350863 (0.12%) (init = 321.142)
d_bound: -60.8600436 +/- 0.00690686 (0.01%) (init = -60.86004)
d_free: -58.6528140 +/- 0.01417487 (0.02%) (init = -58.65281)

[[Correlations]] (unreported correlations are < 0.100)
C(dH, d_bound) = 0.892
C(dH, d_free) = -0.890
C(Tm, d_free) = 0.816
C(d_bound, d_free) = -0.692
C(dH, Tm) = -0.514
C(Tm, d_bound) = -0.186
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5.2 ADAD Two-State Melting Isochore - No Constraints

[[Fit Statistics]]
# fitting method = leastsq
# function evals = 7
# data points = 32
# variables = 6
chi-square = 0.02004218
reduced chi-square = 7.7085e-04
Akaike info crit = -224.020872
Bayesian info crit = -215.226456

[[Variables]]
dH: -30948.6036 +/- 3012.73807 (9.73%) (init = -30948.6)
Tm: 365.659008 +/- 16.0296604 (4.38%) (init = 365.659)
d_bound1: -60.8846915 +/- 0.03514270 (0.06%) (init = -60.88469)
d_free1: -58.4917865 +/- 0.37601474 (0.64%) (init = -58.49179)
d_bound2: -60.8178828 +/- 0.04410058 (0.07%) (init = -60.81788)
d_free2: -57.7287867 +/- 0.48485168 (0.84%) (init = -57.72879)

[[Correlations]] (unreported correlations are < 0.100)
C(Tm, d_free2) = 0.997
C(Tm, d_free1) = 0.996
C(d_free1, d_free2) = 0.995
C(dH, d_free2) = 0.949
C(dH, d_free1) = 0.948
C(dH, Tm) = 0.937
C(dH, d_bound2) = -0.918
C(dH, d_bound1) = -0.892
C(d_bound1, d_bound2) = 0.887
C(d_bound2, d_free2) = -0.802
C(d_free1, d_bound2) = -0.789
C(d_bound1, d_free1) = -0.786
C(d_bound1, d_free2) = -0.768
C(Tm, d_bound2) = -0.767
C(Tm, d_bound1) = -0.745
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5.3 ADAD Two-State Melting Isochore - Limiting Shifts Constrained

[[Fit Statistics]]
# fitting method = leastsq
# function evals = 3
# data points = 32
# variables = 2
chi-square = 0.71967752
reduced chi-square = 0.02398925
Akaike info crit = -117.430015
Bayesian info crit = -114.498543

[[Variables]]
dH: -33777.6504 +/- 2705.75829 (8.01%) (init = -33777.65)
Tm: 342.835185 +/- 2.85285341 (0.83%) (init = 342.8352)
d_bound1: -60.86 (fixed)
d_free1: -58.6528 (fixed)
d_bound2: -60.86 (fixed)
d_free2: -58.6528 (fixed)
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6 Three-State Melting Isochore Derivation and Implementation

Alternatively, melting might proceed through an intermediateM*, giving a three-state equilibrium:

M·M
K1(T,ΔH1,Tm,1)

−−−−−−−−−−−−→←−−−−−−−−−−−− 2 M* (23)

M*
K2(T,ΔH2,Tm,2)

−−−−−−−−−−−−→←−−−−−−−−−−−− M (24)

where the molecular fractions of each species are:

χM·M(T) = 2[M·M](T)
M0

(25)

χM*(T) = [M*](T)
M0

(26)

χM(T) = [M](T)
M0

(27)

Equilibrium constants for the above equilibria can be expressed in terms of the molar fractions as:

K1(T) = [M*]2(T)
[M·M](T) =

2χ2M*(T)[M]0
χM·M(T) (28)

K2(T) = [M](T)
[M*](T) =

χM(T)
χM*(T) (29)

which lets us express the molar fractions in terms of the common intermediate:

χM·M(T) =
2χ2M*(T)[M]0

K1(T) (30)

χM(T) = K2χM*(T) (31)

Noting that at every temperature ∑i χi(T) = 1, we obtain a quadratic equation in χM*(T):

(
2[M]0
K1(T) ) χ2M*(T) + (1 + K2)χM*(T) − 1 = 0 (32)

which has only one physically meaningful root:

χM*(T) =
−(K1(T) + K1(T)K2(T)) + √(K1(T) + K1(T)K2(T))2 + 8[M]0K1(T)

4[M]0
(33)
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Melting temperatures Tm,1 and Tm,1 can be defined as K1(Tm,1) = [M]0 and K2(Tm,2) = 1, respectively. Thus,

Equation (15) gives the following isochores:

K1(T) = [M]0 exp{−
ΔH1
R (

1
T

− 1
Tm,1 )} (34)

K2(T) = exp{−
ΔH2
R (

1
T

− 1
Tm,2 )} (35)

(36)

As before, the observed chemical shift δobs is a weighted average for all species in fast exchange:

δobs = δMχM(T) + δM*χM*(T) + δM·MχM·M(T) (37)

which can be combined with Equations (30) and (31) to yield:

δobs = δMK2χM*(T) + δM*χM*(T) + δM·M
2χ2M*(T)[M]0

K1(T) (38)

Amodel defined by Equations (33), (34), (35) and (38) is then fitted to the experimental data with ΔH1, ΔH2,

Tm,1, Tm,2, δM·M, δM*, and δM as parameters, using lmfit package in Python.2 Analysis was performed in

Jupyter and the results were plotted usingmatplotlib.4,5

1 # FITTING THREE-STATE ISOCHORE TO VT NMR DATA
2 # Non-linear regression done using lmfit
3 # https://lmfit.github.io/lmfit-py/model.html
4

5 from lmfit import Parameters, Model
6 import numpy as np
7

8 # Parameters definition with initial and fixed values
9 # add with tuples: (NAME VALUE VARY MIN MAX EXPR BRUTE_STEP)
10

11 c = 0.00744 # Total concentration (M)
12 R = 8.314 # Universal gas constant (J / mol K)
13

14 fit_params = Parameters()
15 fit_params.add_many((’dH1’, 30000, True, None, None, None, None),
16 (’Tg1’, 300, True, None, None, None, None),
17 (’dH2’, 30000, True, None, None, None, None),
18 (’Tg2’, 394, True, None, None, None, None),
19 (’d_K1’, -60.8600, False, None, None, None, None),
20 (’d_L1’, -60, True, None, None, None, None),
21 (’d_U1’, -58.6528, False, None, None, None, None),
22 (’d_K2’, -60.8600, False, None, None, None, None),
23 (’d_L2’, -58, True, None, None, None, None),
24 (’d_U2’, -58.6528, False, None, None, None, None))
25
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26 # EQUILIBRIUM: K <=(K1)=> 2L // L <=(K2)=> U
27 # Molar fractions and equilibrium constants
28

29 def xL(T, dH1, Tg1, dH2, Tg2):
30 return (K1(T,dH1,Tg1)*(-(1+(K2(T,dH2,Tg2))) + np.sqrt((1+(K2(T,dH2,Tg2)))* \
31 (1+(K2(T,dH2,Tg2))) + 8*c/K1(T,dH1,Tg1)) )/(4*c))
32

33 def xK(T, dH1, Tg1, dH2, Tg2):
34 return 2*c*xL(T, dH1, Tg1, dH2, Tg2)* \
35 xL(T, dH1, Tg1, dH2, Tg2) / (K1(T, dH1, Tg1))
36

37 def xU(T, dH1, Tg1, dH2, Tg2):
38 return (K2(T, dH2, Tg2)) * xL(T, dH1, Tg1, dH2, Tg2)
39

40 def K1(T, dH1, Tg1):
41 return c*np.exp(-dH1/R*(1/T-1/Tg1))
42

43 def K2(T, dH2, Tg2):
44 return np.exp(-dH2/R*(1/T-1/Tg2))
45

46 # MODEL FUNCTION: Observed chemical shift (weighted average)
47

48 def d_obs(T, dH1, Tg1, dH2, Tg2, d_K, d_L, d_U):
49 return xK(T, dH1, Tg1, dH2, Tg2)*d_K + xL(T, dH1, Tg1, dH2, Tg2)*d_L + \
50 xU(T, dH1, Tg1, dH2, Tg2)*d_U
51

52 # Objective function to be minimised
53 # Returns array of residuals of the model
54

55 def fit_function(fit_params, T, F1, F2):
56 dH1 = fit_params[’dH1’].value
57 Tg1 = fit_params[’dH1’].value
58 dH2 = fit_params[’dH1’].value
59 Tg2 = fit_params[’dH1’].value
60 d_K1 = fit_params[’d_K1’].value
61 d_L1 = fit_params[’d_L1’].value
62 d_U1 = fit_params[’d_U1’].value
63 d_K2 = fit_params[’d_K2’].value
64 d_L2 = fit_params[’d_L2’].value
65 d_U2 = fit_params[’d_U2’].value
66

67 modelF1 = d_obs(T, dH1, Tg1, dH2, Tg2, d_K1, d_L1, d_U1)
68 modelF2 = d_obs(T, dH1, Tg1, dH2, Tg2, d_K2, d_L2, d_U2)
69

70 residF1 = F1 - modelF1
71 residF2 = F2 - modelF2
72

73 return np.concatenate((residF1, residF2))
74

75 # Simultaneous fitting parameters to the two 19F signals
76 # T : dataframe containing sample temperatures (K)
77 # d_F1 : dataframe containing observed chemical shifts F1 (ppm)
78 # d_F2 : dataframe containing observed chemical shifts F2 (ppm)
79 # results : contains best fit parameters
80

81 results = minimize(fit_function, fit_params, args=(T, d_F1, d_F2), method=’leastsq’)
82

83 print(fit_report(results) + ’\n’ + fit_report(results2))
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6.1 ADAD Three-State Melting Isochore - No Constraints

[[Fit Statistics]]
# fitting method = leastsq
# function evals = 12
# data points = 32
# variables = 10
chi-square = 7.5876e-04
reduced chi-square = 3.4489e-05
Akaike info crit = -320.785961
Bayesian info crit = -306.128602

[[Variables]]
dH1: 29796.8620 +/- 4103.86205 (13.77%) (init = 29799.05)
Tg1: 333.436383 +/- 34.4010560 (10.32%) (init = 333.4191)
dH2: 33971.9826 +/- 9539.48370 (28.08%) (init = 33977.12)
Tg2: 405.408462 +/- 16.0680797 (3.96%) (init = 405.4011)
d_K1: -60.8544054 +/- 0.01954072 (0.03%) (init = -60.8544)
d_L1: -59.5105048 +/- 0.54125404 (0.91%) (init = -59.51077)
d_U1: -58.6751958 +/- 0.17105372 (0.29%) (init = -58.67521)
d_K2: -60.8788143 +/- 0.03591207 (0.06%) (init = -60.8788)
d_L2: -58.7014142 +/- 0.90702552 (1.55%) (init = -58.70186)
d_U2: -58.8332475 +/- 0.53358457 (0.91%) (init = -58.833)

[[Correlations]] (unreported correlations are < 0.100)
C(Tg1, d_L2) = 1.000
C(d_L1, d_L2) = 0.999
C(Tg1, d_L1) = 0.997
C(d_L1, d_U2) = -0.992
C(d_L2, d_U2) = -0.988
C(Tg1, d_U2) = -0.985
C(dH1, d_K2) = 0.972
C(dH1, Tg1) = -0.965
C(dH1, d_L2) = -0.960
C(d_K1, d_K2) = 0.953
C(dH1, d_L1) = -0.949
C(dH1, d_K1) = 0.943
C(dH1, d_U2) = 0.935
C(dH1, dH2) = 0.929
C(dH2, Tg2) = -0.920
C(Tg1, dH2) = -0.912
C(dH2, d_L2) = -0.903
C(Tg1, d_K2) = -0.886
C(Tg1, d_K1) = -0.884
C(d_K1, d_L2) = -0.883
C(d_K1, d_L1) = -0.882
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6.2 ADAD Three-State Melting Isochore - Limiting Shifts Constrained

[[Fit Statistics]]
# fitting method = leastsq
# function evals = 8
# data points = 32
# variables = 6
chi-square = 0.00124359
reduced chi-square = 4.7830e-05
Akaike info crit = -312.975697
Bayesian info crit = -304.181282

[[Variables]]
dH1: 31403.5044 +/- 475.490681 (1.51%) (init = 31403.57)
Tg1: 324.265341 +/- 1.87996359 (0.58%) (init = 324.2652)
dH2: 37122.5690 +/- 2020.41044 (5.44%) (init = 37122.87)
Tg2: 404.498504 +/- 1.59616141 (0.39%) (init = 404.4984)
d_K1: -60.86 (fixed)
d_L1: -59.6202713 +/- 0.02834152 (0.05%) (init = -59.62027)
d_U1: -58.6528 (fixed)
d_K2: -60.86 (fixed)
d_L2: -58.9369289 +/- 0.03677951 (0.06%) (init = -58.93693)
d_U2: -58.6528 (fixed)

[[Correlations]] (unreported correlations are < 0.100)
C(d_L1, d_L2) = 0.944
C(Tg1, d_L2) = 0.942
C(Tg2, d_L1) = 0.838
C(dH1, dH2) = 0.834
C(Tg2, d_L2) = 0.823
C(Tg1, d_L1) = 0.810
C(dH1, Tg1) = -0.789
C(Tg1, Tg2) = 0.739
C(Tg1, dH2) = -0.681
C(dH1, d_L2) = -0.591
C(dH2, d_L2) = -0.430
C(dH2, Tg2) = -0.397
C(dH1, d_L1) = -0.357
C(dH1, Tg2) = -0.308
C(dH2, d_L1) = -0.178
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7 Molecular Modelling

Molecularmechanics calculations were performed in Schrödinger Suite 2016-4 usingMacroModel software.6

Simplified structures were used, in which the end-capping protecting groups groups and the iso-butyl chains

on the phosphine oxides were changed to methyl groups in order to reduce the computational cost. All struc-

tures were minimised first and the minimised structures were then used as the starting molecular structures

for all MacroModel conformational searches. Two independent searches were performed, usingMMFFs and

OPLS3 as force fields with implicit solvation in chloroform, as implemented in the software.7 The charges

were defined by the force field library and no cut-off was used for non-covalent interaction. For the ADAD

dimers, two hydrogen bonds between the inner residues were constrained and the outer residues were initially

constrained as duplex or kissing stem-loops, with distance defined as (1.7 ± 0.5) Å and force constant of 100.

No constraints were used for monomeric the ADAD. Mixed torsional/Large-Scale Low-Mode Sampling was

used with Enhanced torsion sampling options, so as to include ester C–O bonds, and 100 steps per rotatable

bond. Maximum of 10,000 iterations were performed per sample with redundant conformers eliminated

using root mean square deviation (RMSD) of 2Å. The minima converged on a Polak-Ribiere Conjugate

Gradient (PRCG) with a threshold of 1.0.

The resulting lowest energy structures were used as the starting points for a further conformational search

with only the two hydrogen bonds between the two inner residues in dimeric ADAD constrained. The hy-

drogen bond constraints for the outer residues were removed in the further conformational searches. The

second search was only performed using OPLS3 force field. Above sampling parameters were changed to

a maximum of 20,000 iterations and the structure redundancy criterion was reduced to 1Å RMSD. Mixed

torsional/Large-Scale Low-Mode Sampling was still used with Enhanced torsion sampling options and 100

steps per rotatable bond, and the minima converged on PRCG with a threshold of 1.0. The lowest energy

conformation was further minimised with OPLS3 force field and PRCG with a threshold of 0.01.
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