## Supporting Information

## Cross-Dehydrogenative Coupling Enables Enantioselective Access to $\mathrm{CF}_{3}$-Substituted All-Carbon Quaternary Stereocenters

Xiaoguang Pan, Zehua Wang, Linglong Kan, Ying Mao, Yasheng Zhu, and Lei Liu*

## Table of contents

Table of contents ..... S1
General information ..... S2
Substrate preparation ..... S3
General procedure ..... S13
Absolute configuration determination ..... S32
Synthetic application ..... S37
Mechanistic studies ..... S39
References ..... S42
NMR spectra ..... S43
HPLC spectra for ee determination ..... S143

## General information

Proton ( ${ }^{1} \mathrm{H}$ NMR $)$ nuclear magnetic resonance spectra were recorded at 500 or 600 MHz respectively. Carbon ( ${ }^{13} \mathrm{C}$ NMR) nuclear magnetic resonance spectra were recorded at 126 or 151 MHz respectively. Fluorine ( ${ }^{19}$ F NMR) nuclear magnetic resonance spectra were recorded at 471 MHz respectively. The chemical shifts are given in parts per million (ppm) on the delta ( $\delta$ ) scale. The solvent peak was used as a reference value, for ${ }^{1} \mathrm{H}$ NMR: $\mathrm{CDCl}_{3}=7.26 \mathrm{ppm},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}=2.50 \mathrm{ppm}$, $\mathrm{CD}_{3} \mathrm{OD}=3.31 \mathrm{ppm}, \mathrm{C}_{6} \mathrm{D}_{6}=7.16 \mathrm{ppm}$; for ${ }^{13} \mathrm{C} \mathrm{NMR:} \mathrm{CDCl}_{3}=77.23 \mathrm{ppm},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}=39.51 \mathrm{ppm}$, $\mathrm{CD}_{3} \mathrm{OD}=49.0 \mathrm{ppm}, \mathrm{C}_{6} \mathrm{D}_{6}=128.06 \mathrm{ppm}$. Analytical TLC was performed on precoated silica gel GF254 plates. Column chromatography was carried out on silica gel (200-300 mesh). HRMS were carried out on an Orbitrap analyzer. UV spectra were obtained with an Agilent 8453E UV-Visible spectroscopy system. CD spectra were obtained on a Chirascan spectropolarimeter. Optical rotations were measured using a 2.5 mL cell with a 10 cm path length on Hanon P850 Automatic Polarimeter and concentrations (c) were reported in $\mathrm{g} \times(100 \mathrm{~mL})^{-1}$. Enantiometric excesses were determined by HPLC using a Daicel Chiralpak and Chiralcel column with hexane/i-PrOH as the eluent on Dionex instrument.

## Substrate Preparation



Procedure I for preparation of substrate 1 or 10 ${ }^{[1-2]}$
To a solution of terminal alkyne $\mathbf{S 2}$ ( $6.3 \mathrm{mmol}, 2.1$ equiv) in anhydrous THF at $-78^{\circ} \mathrm{C}$ under $\mathrm{N}_{2}$ was added ${ }^{\mathrm{n}} \mathrm{BuLi}$ ( $6 \mathrm{mmol}, 2.4 \mathrm{~mL}, 2.5 \mathrm{M}$ in hexane, 2.0 equiv) dropwise. The reaction was stirred at the same temperature for 1 h . Then a solution of the corresponding ketone $\mathbf{S 1}$ ( $3 \mathrm{mmol}, 1.0$ equiv) in anhydrous THF ( 5 mL ) was added to the mixture dropwise. The reaction was stirred at $-78{ }^{\circ} \mathrm{C}$ for 15 min and then it was warmed up to room temperature slowly and stirred overnight. Upon completion, the mixture was quenched dropwise by a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution ( 5 mL ). The organic layer was extracted with ethyl acetate $(3 \times 15 \mathrm{~mL})$ and the combined organic layers were washed with saturated aqueous NaCl solution, dried over anhydrous $\mathrm{MgSO}_{4}$, filtered and removed under vacuum. Then the residue was dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ at $-20{ }^{\circ} \mathrm{C}$ and $\mathrm{Et}_{3} \mathrm{SiH}(12 \mathrm{mmol}, 4.0$ equiv) and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(7.5 \mathrm{mmol}, 2.5$ equiv) were added to the solution. The reaction was stirred at the same temperature and monitored by TLC until the complete conversion. Then the reaction was quenched by saturated aqueous $\mathrm{NaHCO}_{3}$ solution ( 10 mL ). The organic layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$ and the combined organic layers were washed with saturated aqueous NaCl solution, dried over anhydrous $\mathrm{MgSO}_{4}$, filtered and removed under vacuum. The residue was purified by a column chromatography on silica gel using ethyl acetate/petroleum ether as eluent to give the desired product $\mathbf{1}$ or $\mathbf{1 0}$.

## Procedure II for preparation of substrate $5^{[3-4]}$

To a solution of aromatic aldehyde $\mathbf{S 3}$ ( $2.0 \mathrm{mmol}, 1.0$ equiv) in anhydrous THF at $0^{\circ} \mathrm{C}$ under $\mathrm{N}_{2}$ was added TMSCF $_{3}$ ( $2.4 \mathrm{mmol}, 1.2$ equiv) and TBAF ( $2.4 \mathrm{mmol}, 2.4 \mathrm{~mL}, 1.0 \mathrm{~mol} / \mathrm{L}$ in THF, 1.2 equiv) dropwise. Then the reaction was warmed to room temperature and monitored by TLC until the complete conversion. Then the mixture was quenched dropwise by a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution ( 5 mL ). The organic layer was extracted with ethyl acetate $(3 \times 15 \mathrm{~mL})$ and the combined organic layers were washed with saturated aqueous NaCl solution, dried over anhydrous $\mathrm{MgSO}_{4}$, filtered and removed under vacuum. The residue was purified by a column chromatography on silica gel using ethyl acetate/petroleum ether as eluent to give the desired product $\mathbf{S 4}$. Then the product $\mathbf{S 4}$ was dissolved in HFIP ( 5 mL ) and TfOH ( 0.05 equiv) and PhOH ( 3.0 equiv) were added to the solution. The mixture was heated to reflux and monitored by TLC until the complete conversion. Then the reaction was quenched by saturated aqueous $\mathrm{NaHCO}_{3}$ solution ( 10 mL ). The organic layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$ and the combined organic layers were washed with saturated aqueous NaCl solution, dried over anhydrous $\mathrm{MgSO}_{4}$, filtered and removed under vacuum. The residue was purified by a column chromatography on silica gel using ethyl acetate/petroleum ether as eluent to give the desired product 5 .


## 4-(1,1,1-Trifluoro-4-phenylbut-3-yn-2-yl)phenol (1a)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.32(\mathrm{~m}, 3 \mathrm{H})$, $6.88(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.41(\mathrm{brs}, 1 \mathrm{H}), 4.52(\mathrm{q}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $156.2,132.1,131.0,129.0,128.6,124.6(\mathrm{q}, ~ J=280.4 \mathrm{~Hz}), 124.4,122.4,115.8,85.8,82.1(\mathrm{q}, J=3.2$ Hz ), $43.5(\mathrm{q}, J=31.6 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR ( $471 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-70.8$; HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{O}[\mathrm{M}-\mathrm{H}]^{-} 275.0689$, found 275.0679.


4-(1,1,1-Trifluoro-4-(4-methoxyphenyl)but-3-yn-2-yl)phenol (1b)
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46-7.38(\mathrm{~m}, 4 \mathrm{H}), 6.88-6.82(\mathrm{~m}, 4 \mathrm{H}), 4.48(\mathrm{q}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.82(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 160.1,156.2,133.6,131.0,124.6(\mathrm{q}, J=280.4 \mathrm{~Hz}$ ), $124.6,115.7,114.5,114.2,85.6,80.6(\mathrm{q}, J=3.3 \mathrm{~Hz}), 55.5,43.5(\mathrm{q}, J=31.5 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR (471 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-70.9$; HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{O}_{2}[\mathrm{M}-\mathrm{H}]^{-}$305.0795, found 305.0803 .


## 4-(1,1,1-Trifluoro-4-(p-tolyl)but-3-yn-2-yl)phenol (1c)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.15(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, 5.11 (brs, 1H), $4.50(\mathrm{q}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 156.2,139.2$, $132.0,131.0,129.3,124.6(\mathrm{q}, J=280.4 \mathrm{~Hz}), 124.5,119.3,115.8,85.9,81.3(\mathrm{q}, J=3.3 \mathrm{~Hz}), 43.5(\mathrm{q}$, $J=31.5 \mathrm{~Hz}$ ), 21.7; ${ }^{19} \mathrm{~F}$ NMR ( $471 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-70.8$; HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{O}$ [ $\mathrm{M}-\mathrm{H}]^{-}$289.0846, found 289.0843.


## 4-(4-(4-Chlorophenyl)-1,1,1-trifluorobut-3-yn-2-yl)phenol (1d)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.31(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, 5.33 (brs, 1H), $4.49(\mathrm{q}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 156.3,135.1,133.3,130.9$, $128.9,124.5(\mathrm{q}, ~ J=280.4 \mathrm{~Hz}), 124.1,120.8,115.9,84.6,83.1(\mathrm{q}, J=3.3 \mathrm{~Hz}), 43.5(\mathrm{q}, J=31.6 \mathrm{~Hz})$; ${ }^{19} \mathrm{~F}$ NMR ( $471 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-70.8$; HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{16} \mathrm{H}_{9} \mathrm{ClF}_{3} \mathrm{O}[\mathrm{M}-\mathrm{H}]{ }^{-}$ 309.0300 , found 309.0291 .


4-(1,1,1-Trifluoro-4-(4-fluorophenyl)but-3-yn-2-yl)phenol (1e)
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.53-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.09-6.98(\mathrm{~m}, 2 \mathrm{H})$, $6.87(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.05(\mathrm{brs}, 1 \mathrm{H}), 4.48(\mathrm{q}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ $163.0(\mathrm{~d}, J=250.1 \mathrm{~Hz}), 156.3,134.1(\mathrm{~d}, J=8.5 \mathrm{~Hz}), 130.9,124.5(\mathrm{q}, ~ J=280.4 \mathrm{~Hz}), 124.2,118.4(\mathrm{~d}$, $J=3.5 \mathrm{~Hz}), 115.9(\mathrm{~d}, J=22.1 \mathrm{~Hz}), 115.8,84.7,81.8(\mathrm{q}, J=1.7 \mathrm{~Hz}), 43.5(\mathrm{q}, J=31.6 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR (471 MHz, $\mathrm{CDCl}_{3}$ ) $\delta-70.8,-110.1$; HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{16} \mathrm{H}_{9} \mathrm{~F}_{4} \mathrm{O}[\mathrm{M}-\mathrm{H}]^{-}$293.0595, found 293.0587 .


## 4-(1,1,1-Trifluoro-4-(3-methoxyphenyl)but-3-yn-2-yl)phenol (1f)

${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.38(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.09-7.04(\mathrm{~m}, 1 \mathrm{H})$, $7.01-6.98(\mathrm{~m}, 1 \mathrm{H}), 6.91-6.87(\mathrm{~m}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.26(\mathrm{brs}, 1 \mathrm{H}), 4.46(\mathrm{q}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 159.4,156.2,131.0,129.7,124.7,124.6(\mathrm{q}, J=$ $280.4 \mathrm{~Hz}), 124.3,123.4,116.9,115.8,115.6,85.6,81.9(\mathrm{q}, J=3.3 \mathrm{~Hz}), 55.6,43.5(\mathrm{q}, J=31.6 \mathrm{~Hz})$; ${ }^{19}$ F NMR ( $471 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-70.7$; HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{O}_{2}[\mathrm{M}-\mathrm{H}]^{-} 305.0795$, found 305.0788.


4-(1,1,1-Trifluoro-4-(2-methoxyphenyl)but-3-yn-2-yl)phenol (1g)
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.49-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.35-7.30(\mathrm{~m}, 1 \mathrm{H}), 6.96-6.90(\mathrm{~m}, 1 \mathrm{H}), 6.89(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.08(\mathrm{brs}, 1 \mathrm{H}), 4.54(\mathrm{q}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 160.7,156.2,134.0,131.1,130.4,124.6(\mathrm{q}, J=280.5 \mathrm{~Hz}), 124.5,120.7$, 115.7, 111.7, 111.1, 86.1 ( $\mathrm{q}, ~ J=3.4 \mathrm{~Hz}$ ), 82.2, $56.1,43.7(\mathrm{q}, J=31.4 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR ( 471 MHz , $\mathrm{CDCl}_{3}$ ) $\delta-70.8$; HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{O}_{2}[\mathrm{M}-\mathrm{H}]^{-}$305.0795, found 305.0797.


4-(1,1,1-Trifluoro-4-(naphthalen-2-yl)but-3-yn-2-yl)phenol (1h)
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.85-7.78(\mathrm{~m}, 3 \mathrm{H}), 7.56-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.47(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.21(\mathrm{brs}, 1 \mathrm{H}), 4.56(\mathrm{q}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 126 MHz , $\mathrm{CDCl}_{3}$ ) $\delta 156.3,133.2,133.1,132.2,131.0,128.6,128.3,128.0,128.0,127.1,126.9,124.6$ (q, $J=$ $280.5 \mathrm{~Hz}), 124.3,119.6,115.8,86.1,82.3(\mathrm{q}, J=3.3 \mathrm{~Hz}), 43.6(\mathrm{q}, J=31.5 \mathrm{~Hz}) ;{ }^{19}$ F NMR ( 471 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$-70.7; HRMS (ESI) m/z calculated for $\mathrm{C}_{20} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{O}[\mathrm{M} \mathrm{-} \mathrm{H}]^{-}$325.0846, found 325.0843.


## 4-(1,1,1-Trifluoro-4-(thiophen-3-yl)but-3-yn-2-yl)phenol (1i)

${ }^{1} \mathrm{H}$ NMR ( 500 MHz, DMSO- $d_{6}$ ) $\delta 9.66$ (brs, 1H), $7.93-7.85(\mathrm{~m}, 1 \mathrm{H}), 7.65-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J$ $=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.21(\mathrm{q}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- $d_{6}$ ) $\delta 157.9,130.7,130.4,129.6,127.0,124.8(\mathrm{q}, ~ J=280.0 \mathrm{~Hz}), 121.7,120.2,115.5$, $82.2(\mathrm{q}, J=3.1 \mathrm{~Hz}), 80.0,41.3(\mathrm{q}, J=30.5 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR ( 471 MHz , Acetone $-d_{6}$ ) $\delta-71.4$; HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{~F}_{3} \mathrm{OS}[\mathrm{M}-\mathrm{H}]^{-}$281.0253, found 281.0248.


## 2,6-Dimethoxy-4-(1,1,1-trifluoro-4-phenylbut-3-yn-2-yl)phenol (1j)

${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ) $\delta 7.49-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.32(\mathrm{~m}, 3 \mathrm{H}), 6.84(\mathrm{~s}, 2 \mathrm{H}), 4.85$ (brs, $1 \mathrm{H}), 4.79(\mathrm{q}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ) $\delta$ 149.2, 137.4, 132.7, $129.9,129.6,126.1(\mathrm{q}, ~ J=279.5 \mathrm{~Hz}), 123.8,123.5,107.9,86.3,83.3(\mathrm{q}, J=3.4 \mathrm{~Hz}), 56.9,44.3(\mathrm{q}, J$ $=31.3 \mathrm{~Hz}$ ); ${ }^{19}$ F NMR ( $471 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ) $\delta-72.1$; HRMS (ESI) m/z calculated for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{O}_{3}[\mathrm{M}-$ H] ${ }^{-} 335.0901$, found 335.0908.

${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.54-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.15(\mathrm{~s}, 2 \mathrm{H}), 4.70(\mathrm{brs}, 1 \mathrm{H})$, $4.43(\mathrm{q}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 152.9, 132.1, 129.7, 128.9, 128.5, $126.9(\mathrm{q}, J=280.7 \mathrm{~Hz}), 123.5,122.6,85.5,82.4(\mathrm{q}, J=3.1 \mathrm{~Hz}), 43.6(\mathrm{q}, ~ J=31.4 \mathrm{~Hz}), 16.1$; ${ }^{19}$ F NMR ( $471 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$-70.7; HRMS (ESI) m/z calculated for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{O}[\mathrm{M}-\mathrm{H}]{ }^{-} 303.1002$, found 303.0998.


## 2,6-Dimethyl-4-(1,1,1-trifluorooct-3-yn-2-yl)phenol (11)

${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.08(\mathrm{~s}, 2 \mathrm{H}), 4.69(\mathrm{brs}, 1 \mathrm{H}), 4.18(\mathrm{qt}, J=8.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.30-2.24$ $(\mathrm{m}, 8 \mathrm{H}), 1.59-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.42(\mathrm{~m}, 2 \mathrm{H}), 0.94(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 152.7,129.6,124.9(\mathrm{q}, J=280.1 \mathrm{~Hz}), 124.2,123.3,86.2,73.2(\mathrm{q}, J=3.2 \mathrm{~Hz}), 43.0(\mathrm{q}, J=$ 31.1 Hz ), $30.8,22.1,18.6,16.1,13.8 ;{ }^{19}$ F NMR ( $471 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-71.1 ;$ HRMS (ESI) m/z calculated for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{O}[\mathrm{M}-\mathrm{H}]^{-}$283.1315, found 283.1321.


## 2,6-Dimethyl-4-(1,1,1-trifluorodec-3-yn-2-yl)phenol (1m)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.07(\mathrm{~s}, 2 \mathrm{H}), 4.68(\mathrm{brs}, 1 \mathrm{H}), 4.17(\mathrm{qt}, J=8.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.24$ $(\mathrm{m}, 8 \mathrm{H}), 1.58-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.26(\mathrm{~m}, 4 \mathrm{H}), 0.89(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.7,129.6,124.9(\mathrm{q}, J=280.1 \mathrm{~Hz}), 124.2,123.3,86.3,73.2(\mathrm{q}, J=3.5$ $\mathrm{Hz}), 43.0(\mathrm{q}, ~ J=30.9 \mathrm{~Hz}), 31.5,28.7,28.7,22.8,18.9,16.1,14.2 ;{ }^{19} \mathrm{~F}$ NMR ( $471 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ -71.2; HRMS (ESI) m/z calculated for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{O}[\mathrm{M}-\mathrm{H}]^{-} 311.1628$, found 311.1620.


## 2,6-Dimethyl-4-(1,1,1-trifluoro-9-hydroxynon-3-yn-2-yl)phenol (1n)

${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.06(\mathrm{~s}, 2 \mathrm{H}), 4.20-4.12(\mathrm{~m}, 1 \mathrm{H}), 3.66(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.30-2.23$ $(\mathrm{m}, 8 \mathrm{H}), 1.63-1.55(\mathrm{~m}, 4 \mathrm{H}), 1.52-1.47(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 152.6,129.4$, 124.7 (q, $J=280.2 \mathrm{~Hz}$ ), 123.8, 123.3, $85.7,73.3(\mathrm{q}, J=3.8 \mathrm{~Hz}), 62.9,42.7(\mathrm{q}, J=31.2 \mathrm{~Hz}), 32.2$, 28.2, 24.9, 18.7, 16.0; ${ }^{19} \mathrm{~F}$ NMR ( $471 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$-71.1; HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{O}_{2}[\mathrm{M}-\mathrm{H}]^{-}$313.1421, found 313.1423.


## 4-(5-Chloro-1,1,1-trifluoropent-3-yn-2-yl)-2,6-dimethylphenol (10)

${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.04(\mathrm{~s}, 2 \mathrm{H}), 4.28-4.23(\mathrm{~m}, 1 \mathrm{H}), 4.21(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.26(\mathrm{~s}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.0,129.6,124.4(\mathrm{q}, J=280.4 \mathrm{~Hz}), 123.6,122.7,80.3,79.8$ $(\mathrm{q}, J=3.0 \mathrm{~Hz}), 43.0(\mathrm{q}, J=31.6 \mathrm{~Hz}), 30.4,16.1 ;{ }^{19} \mathrm{~F}$ NMR ( $471 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-70.4$; HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{ClF}_{3} \mathrm{O}[\mathrm{M}-\mathrm{H}]^{-} 275.0456$, found 275.0449.


## 4-(4-(Tert-butyldimethylsilyl)-1,1,1-trifluorobut-3-yn-2-yl)-2,6-dimethylphenol (1p)

${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.09(\mathrm{~s}, 2 \mathrm{H}), 4.70(\mathrm{brs}, 1 \mathrm{H}), 4.23(\mathrm{q}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 6 \mathrm{H})$, $0.98(\mathrm{~s}, 9 \mathrm{H}), 0.15(\mathrm{~s}, 3 \mathrm{H}), 0.15(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 152.8,129.8,124.5(\mathrm{q}, J=$ $280.4 \mathrm{~Hz}), 123.4,123.3,99.0(\mathrm{q}, J=3.1 \mathrm{~Hz}), 89.5,43.8(\mathrm{q}, J=31.2 \mathrm{~Hz}), 26.2,16.9,16.1,-4.6 ;{ }^{19} \mathrm{~F}$ NMR ( $471 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-70.9$; HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{OSi}[\mathrm{M}-\mathrm{H}] 341.1554$, found 341.1568 .


## 4-(2,2,2-Trifluoro-1-phenylethyl)phenol (5a)

${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.41-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.24(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, $4.63(\mathrm{q}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.3,135.8(\mathrm{q}, J=1.0 \mathrm{~Hz}), 130.7,129.2$, 128.9, 128.0, $128.0(\mathrm{q}, J=1.4 \mathrm{~Hz}), 126.4(\mathrm{q}, J=280.4 \mathrm{~Hz}, 2 \mathrm{H}), 115.8,54.9(\mathrm{q}, J=27.5 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR ( $471 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-66.1$; HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{O}[\mathrm{M}-\mathrm{H}]^{-}$251.0689, found 251.0694 .


## 4-(2,2,2-Trifluoro-1-(4-methoxyphenyl)ethyl)phenol (5b)

${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ) $\delta 7.27(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $2 \mathrm{H}), 6.76(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.67(\mathrm{q}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ) $\delta 160.6,158.1,131.2,131.2,129.5,128.1,128.1(\mathrm{q}, J=279.5 \mathrm{~Hz}), 116.3,114.9,55.6,54.8(\mathrm{q}, J=$ 27.4 Hz); ${ }^{19}$ F NMR ( $471 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ) $\delta-67.8$; HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{O}_{2}[\mathrm{M}-$ $\mathrm{H}]^{\top}$ 281.0795, found 281.0803.


## 4-(2,2,2-Trifluoro-1-(p-tolyl)ethyl)phenol (5c)

${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.30-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.19(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $2 \mathrm{H}), 5.19(\mathrm{brs}, 1 \mathrm{H}), 4.61(\mathrm{q}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 155.2$, $137.8,132.9,130.6,129.6,129.0,128.2(\mathrm{q}, J=1.5 \mathrm{~Hz}), 126.5(\mathrm{q}, J=280.4 \mathrm{~Hz}), 115.7,54.6(\mathrm{q}, J=$ 27.5 Hz ), 21.2; ${ }^{19}$ F NMR ( $471 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-66.2 ;$ HRMS (ESI) m/z calculated for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{O}[\mathrm{M}$ - H] ${ }^{-}$265.0846, found 265.0839.


## 4-(1-(4-Chlorophenyl)-2,2,2-trifluoroethyl)phenol (5d)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.20(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, 5.08 (brs, 1H), $4.60(\mathrm{q}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.6,134.4,134.1,130.6$, 130.6, 129.1, 127.4, 126.2 ( $\mathrm{q}, ~ J=280.4 \mathrm{~Hz}$ ), 115.9, 54.3 (q, $J=27.8 \mathrm{~Hz}$ ); ${ }^{19}$ F NMR ( 471 MHz , $\mathrm{CDCl}_{3}$ ) $\delta$-66.3; HRMS (ESI) m/z calculated for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{ClF}_{3} \mathrm{O}[\mathrm{M}-\mathrm{H}]^{-} 285.0300$, found 285.0306.


## 4-(2,2,2-Trifluoro-1-(3-methoxyphenyl)ethyl)phenol (5e)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.91(\mathrm{~s}, 1 \mathrm{H}), 6.86-6.82(\mathrm{~m}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.53(\mathrm{brs}, 1 \mathrm{H}), 4.57(\mathrm{q}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.77(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 159.8,155.4,137.3,130.6,129.9,127.8,126.4(\mathrm{q}, J=$ 280.5 Hz ), 121.7, 115.8, 115.5, 113.1, $55.5,54.9(\mathrm{q}, J=27.6 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR ( $471 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ -66.0; HRMS (ESI) m/z calculated for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{O}_{2}[\mathrm{M}-\mathrm{H}]^{-}$281.0795, found 281.0799.


## 2,6-Dimethyl-4-(2,2,2-trifluoro-1-phenylethyl)phenol (5f)

${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.42-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.00(\mathrm{~s}, 2 \mathrm{H}), 4.65(\mathrm{brs}, 1 \mathrm{H})$, $4.57(\mathrm{q}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.1,136.1(\mathrm{q}, J=1.2 \mathrm{~Hz})$, 129.5, 129.2, 128.9, 127.9, 127.2 (q, $J=1.3 \mathrm{~Hz}), 126.6(\mathrm{q}, J=280.5 \mathrm{~Hz}), 123.5,55.1(\mathrm{q}, J=27.4$ Hz ), 16.2; ${ }^{19} \mathrm{~F}$ NMR ( $471 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$-66.0; HRMS (ESI) m/z calculated for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{O}[\mathrm{M}-\mathrm{H}]^{-}$ 279.1002, found 279.0993.


## 4-(1-Chloro-1,1-difluoro-4-phenylbut-3-yn-2-yl)phenol (10a)

${ }^{1} \mathrm{H}$ NMR ( $\left.500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.51-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{~d}, 2 \mathrm{H}), 7.35-7.26(\mathrm{~m}, 3 \mathrm{H}), 6.85-6.81$ (m, 2H), $4.84-4.73(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ) $\delta 159.1,132.6,132.1,130.2(\mathrm{t}, J=$ $295.0 \mathrm{~Hz}), 129.8,129.5,124.8,123.6,116.2,86.7,84.4(\mathrm{t}, J=4.5 \mathrm{~Hz}), 50.4(\mathrm{t}, J=27.2 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR (471 MHz, $\mathrm{CD}_{3} \mathrm{OD}$ ) $\delta-51.64--54.25(\mathrm{~m}, 2 \mathrm{~F})$; HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{ClF}_{2} \mathrm{O}$ [ $\mathrm{M}-\mathrm{H}]^{-}$291.0394, found 291.0399.


4-(4,4,5,5,5-Pentafluoro-1-(4-methoxyphenyl)pent-1-yn-3-yl)phenol (10b)
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.38-7.31(\mathrm{~m}, 4 \mathrm{H}), 6.89-6.86(\mathrm{~m}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, 4.75 - $4.65(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ) $\delta 161.5,159.2,134.1,132.0,123.5$, $125.4-116.1(\mathrm{~m}), 116.4,115.5,115.1,86.8,81.3(\mathrm{dd}, J=9.3,2.5 \mathrm{~Hz}), 55.8,41.6(\mathrm{dd}, J=26.6,22.4$ Hz ); ${ }^{19}$ F NMR ( $471 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ) $\delta-82.3--82.5$ (m, 3F), $-115.7--122.6$ (m, 2F); HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~F}_{5} \mathrm{O}_{2}[\mathrm{M}-\mathrm{H}]^{-} 355.0763$, found 355.0755.


4-(4,4,5,5,6,6,6-Heptafluoro-1-(4-methoxyphenyl)hex-1-yn-3-yl)phenol (10c)
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.44-7.39(\mathrm{~m}, 4 \mathrm{H}), 6.89-6.85(\mathrm{~m}, 4 \mathrm{H}), 5.48$ (brs, 1H), $4.61-4.52$ $(\mathrm{m}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 160.1,156.3,133.5,131.6,123.8,115.7,114.6$, $121.99-106.96(\mathrm{~m}), 114.2,86.3,80.3(\mathrm{~d}, J=9.8 \mathrm{~Hz}), 55.5,41.1(\mathrm{dd}, J=27.7,22.6 \mathrm{~Hz}) ;{ }^{19}$ F NMR (471 MHz, $\mathrm{CDCl}_{3}$ ) $\delta-80.6--80.7(\mathrm{~m}, 3 \mathrm{~F}),-111.5--112.3(\mathrm{~m}, 1 \mathrm{~F}),-116.5--117.3(\mathrm{~m}, 1 \mathrm{~F}),-122.6-$ $-125.3(\mathrm{~m}, 2 \mathrm{~F})$; HRMS (ESI) m/z calculated for $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{~F}_{7} \mathrm{O}_{2}[\mathrm{M}-\mathrm{H}]^{-} 405.0731$, found 405.0744.

## General procedure

## General procedure for asymmetric $\mathbf{C D C}$ of racemic $p$-hydroxybenzyl $\mathrm{CF}_{3}$ moieties with heteroarenes

A mixture of $\mathbf{1}$ or $\mathbf{5}\left(0.1 \mathrm{mmol}, 1.0\right.$ equiv), activated $\mathrm{MnO}_{2}$ ( $0.3 \mathrm{mmol}, 3.0$ equiv), and DDQ ( 0.025 mmol, 0.25 equiv) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ was stirred at $60^{\circ} \mathrm{C}$ in a sealed tube and monitored by TLC. Upon starting material consumption, the mixture was cooled to $-78^{\circ} \mathrm{C}$ directly and stirred at the same temperature for 15 min . (Note: the paraquinomethide could be stable in this system.) Then $3 \AA$ molecular sieves ( 20 mg ), $\mathrm{K}_{2} \mathrm{CO}_{3}(0.2 \mathrm{mmol}, 2.0$ equiv), $\mathbf{2 a}(0.3 \mathrm{mmol}, 3.0$ equiv) and catalyst $\mathbf{3 c}$ ( $0.005 \mathrm{mmol}, 0.05$ equiv) were added in sequence quickly. (Attention: the order of addition is important.) Then the mixture was stirred at the same temperature and monitored by TLC. Upon completion, the reaction was warm to room temperature and a solution of saturated aqueous NaCl solution ( 1 ml ) was added to the mixture. Then the mixture was extracted with EtOAc, and the combined organic layer was dried over $\mathrm{MgSO}_{4}$, filtered and evaporated under vacuum. The residue was purified by a flash column chromatography to give the desired product.

(S)-4-(1,1,1-Trifluoro-2-(1H-indol-3-yl)-4-phenylbut-3-yn-2-yl)phenol (4a)

It was purified by silica gel chromatography using EtOAc/petroleum ether (1:4). Yield: 86\% (33.7 $\mathrm{mg}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.17(\mathrm{brs}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.45(\mathrm{~m}, 2 \mathrm{H})$, $7.42-7.27(\mathrm{~m}, 6 \mathrm{H}), 7.20-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.01-6.96(\mathrm{~m}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.7,136.6,132.1,130.7,129.1,128.8,128.5,125.8(\mathrm{q}, J=284.2 \mathrm{~Hz}), 125.7$, $123.0(\mathrm{q}, J=2.6 \mathrm{~Hz}), 122.6,122.6,121.3,120.1,115.2,112.6,111.4,86.5,86.2(\mathrm{q}, J=1.5 \mathrm{~Hz}), 51.2$ ( $\mathrm{q}, J=29.3 \mathrm{~Hz}$ ); ${ }^{19}$ F NMR ( $471 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-70.5$; HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{24} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{NO}$ [ $\mathrm{M}-\mathrm{H}]^{-}$390.1111, found 390.1116; HPLC: the ee value was determined by HPLC analysis (Chiralpak AS-H, $i-\mathrm{PrOH} /$ hexane $=15 / 85,1.0 \mathrm{~mL} / \mathrm{min}, 227 \mathrm{~nm})$, retention time: $\mathrm{t}_{\text {minor }}=13.790 \mathrm{~min}$, $\mathrm{t}_{\text {major }}=16.100 \mathrm{~min}, \mathrm{ee}=92.6 \% ;[\alpha]_{\mathrm{D}}{ }^{30}=-96.5\left(\mathrm{c}=0.98, \mathrm{CHCl}_{3}\right)$.

( S )-4-(1,1,1-Trifluoro-2-(1H-indol-3-yl)-4-(4-methoxyphenyl)but-3-yn-2-yl)phenol (4b)
It was purified by silica gel chromatography using EtOAc/petroleum ether (1:4). Yield: 89\% (37.5 $\mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.17$ (brs, 1 H ), 7.53 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$ ), $7.43-7.31$ (m, 5 H ), $7.18-7.15(\mathrm{~m}, 1 \mathrm{H}), 6.99-6.95(\mathrm{~m}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.76(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 160.0,155.7,136.6,133.5,130.7,129.3,125.8(\mathrm{q}, J=284.0$ Hz ), 125.7, 123.0 (q, $J=2.4 \mathrm{~Hz}$ ), 122.6, 121.3, 120.0, 115.1, 114.8, 114.1, 112.8, 111.3, 86.4, 84.8 $(\mathrm{q}, J=1.5 \mathrm{~Hz}), 55.5,51.2(\mathrm{q}, J=29.1 \mathrm{~Hz}) ;{ }^{19}$ F NMR ( $471 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-70.7 ;$ HRMS (ESI) m/z calculated for $\mathrm{C}_{25} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{NO}_{2}[\mathrm{M}-\mathrm{H}]^{-} 420.1217$, found 420.1211; HPLC: the ee value was determined by HPLC analysis (Chiralpak AS-H, $i-\mathrm{PrOH} /$ hexane $=15 / 85,1.0 \mathrm{~mL} / \mathrm{min}, 266 \mathrm{~nm}$ ), retention time: $\mathrm{t}_{\text {minor }}=12.620 \mathrm{~min}, \mathrm{t}_{\text {major }}=15.593 \mathrm{~min}$, ee $=95.1 \% ;[\alpha]_{\mathrm{D}}{ }^{30}=-119.3\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right)$.

(S)-4-(1,1,1-Trifluoro-2-(1H-indol-3-yl)-4-(p-tolyl)but-3-yn-2-yl)phenol (4c)

It was purified by silica gel chromatography using EtOAc/petroleum ether (1:4). Yield: 85\% (34.4 $\mathrm{mg}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.42(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.28(\mathrm{~m}$, $2 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.04(\mathrm{~m}, 1 \mathrm{H}), 6.88-6.82(\mathrm{~m}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ) $\delta 158.6,140.1,138.3,132.6,131.3,130.2$, 129.0, $127.2(\mathrm{q}, ~ J=282.9 \mathrm{~Hz}), 126.8,124.2(\mathrm{q}, J=2.5 \mathrm{~Hz}), 122.7,121.7,120.8,119.9,115.7,112.7$, $112.4,87.2,87.0(\mathrm{q}, J=1.7 \mathrm{~Hz}), 52.4(\mathrm{q}, J=29.1 \mathrm{~Hz}), 21.4 ;{ }^{19} \mathrm{~F}$ NMR ( $471 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ) $\delta-71.9$; HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{25} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{NO}[\mathrm{M}-\mathrm{H}]{ }^{-}$404.1268, found 404.1280; HPLC: the ee value was determined by HPLC analysis (Chiralpak AS-H, $i$-PrOH/hexane $=15 / 85,1.0 \mathrm{~mL} / \mathrm{min}, 258$ $\mathrm{nm})$, retention time: $\mathrm{t}_{\text {minor }}=14.363 \mathrm{~min}, \mathrm{t}_{\text {major }}=17.240 \mathrm{~min}$, ee $=89.9 \% ;[\alpha]_{\mathrm{D}}{ }^{30}=-95.3(\mathrm{c}=1.00$, $\mathrm{CHCl}_{3}$ ).

(S)-4-(4-(4-Chlorophenyl)-1,1,1-trifluoro-2-(1H-indol-3-yl)but-3-yn-2-yl)phenol (4d)

It was purified by silica gel chromatography using EtOAc/petroleum ether (1:4). Yield: 80\% (34.0 $\mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.20(\mathrm{brs}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.36(\mathrm{~m}, 4 \mathrm{H})$, $7.32-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.21-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.01-6.95(\mathrm{~m}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.6,136.4,134.7,133.1,130.4,128.6,128.6,125.5(\mathrm{q}, J=284.2 \mathrm{~Hz}$ ), 125.5, $122.9(\mathrm{q}, J=2.6 \mathrm{H}), 122.5,121.0,120.9,119.9,115.0,112.2,111.2,87.1(\mathrm{q}, J=1.5 \mathrm{~Hz}), 85.18,51.1$ ( $\mathrm{q}, J=29.4 \mathrm{~Hz}$ ); ${ }^{19} \mathrm{~F}$ NMR ( $471 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-70.6$; HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{24} \mathrm{H}_{14} \mathrm{ClF}_{3} \mathrm{NO}[\mathrm{M}-\mathrm{H}]-424.0721$, found 424.0715; HPLC: the ee value was determined by HPLC analysis (Chiralpak AS-H, $i-\mathrm{PrOH} /$ hexane $=15 / 85,1.0 \mathrm{~mL} / \mathrm{min}, 253 \mathrm{~nm}$ ), retention time: $\mathrm{t}_{\text {minor }}=$ $12.620 \mathrm{~min}, \mathrm{t}_{\text {major }}=15.593 \mathrm{~min}, \mathrm{ee}=91.2 \% ;[\alpha]_{\mathrm{D}}{ }^{30}=-125.8\left(\mathrm{c}=1.02, \mathrm{CHCl}_{3}\right)$.

(S)-4-(1,1,1-Trifluoro-4-(4-fluorophenyl)-2-(1H-indol-3-yl)but-3-yn-2-yl)phenol (4e)

It was purified by silica gel chromatography using EtOAc/petroleum ether (1:4). Yield: 76\% (31.0 $\mathrm{mg}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.19$ (brs, 1 H ), 7.51 (d, $\left.J=8.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.47-7.42(\mathrm{~m}, 2 \mathrm{H})$, $7.42-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.03-6.93(\mathrm{~m}, 3 \mathrm{H}), 6.77(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}), 4.83$ (brs, 1 H ); ${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 162.9$ (d, $J=249.8 \mathrm{~Hz}$ ), 155.8, 136.6, 134.0 $(\mathrm{d}, J=8.4 \mathrm{~Hz}), 130.7,129.0,125.7(\mathrm{q}, J=284.0 \mathrm{~Hz}), 125.7,123.0(\mathrm{q}, J=2.6 \mathrm{~Hz}), 122.7,121.2$, 120.1, 118.7 (d, $J=3.5 \mathrm{~Hz}$ ), $115.8(\mathrm{~d}, J=22.1 \mathrm{~Hz}), 115.2,112.5,111.4,86.0(\mathrm{q}, J=1.6 \mathrm{~Hz}), 85.5$, $51.2(\mathrm{q}, J=29.1 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR ( $471 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-70.7,-110.4$; HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{24} \mathrm{H}_{14} \mathrm{~F}_{4} \mathrm{NO}[\mathrm{M}-\mathrm{H}]^{-}$408.1017, found 408.1008; HPLC: the ee value was determined by HPLC analysis (Chiralpak AS-H, $i-\operatorname{PrOH} /$ hexane $=15 / 85,1.0 \mathrm{~mL} / \mathrm{min}, 215 \mathrm{~nm}$ ), retention time: $\mathfrak{t}_{\text {minor }}=$ $13.690 \mathrm{~min}, \mathrm{t}_{\text {major }}=16.470 \mathrm{~min}$, ee $=95.8 \% ;[\alpha]_{\mathrm{D}}{ }^{30}=-105.5\left(\mathrm{c}=0.98, \mathrm{CHCl}_{3}\right)$.

(S)-4-(1,1,1-Trifluoro-2-(1H-indol-3-yl)-4-(3-methoxyphenyl)but-3-yn-2-yl)phenol (4f)

It was purified by silica gel chromatography using EtOAc/petroleum ether (1:4). Yield: 85\% (35.6 $\mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.17$ (brs, 1 H ), 7.53 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$ ), $7.40-7.33$ (m, 3H), $7.23-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.06(\mathrm{~m}, 1 \mathrm{H}), 7.01-6.96(\mathrm{~m}, 2 \mathrm{H}), 6.90-6.86(\mathrm{~m}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}$ ), 4.92 (brs, 1H), 3.77 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 159.5,155.7,136.6,130.7$, 129.6, 129.0, $125.8(\mathrm{q}, ~ J=284.3 \mathrm{~Hz}), 125.7,124.7,123.6,123.1(\mathrm{q}, J=2.7 \mathrm{~Hz}), 122.7,121.3,120.1$, $116.9,115.5,115.2,112.6,111.4,86.4,86.1(\mathrm{q}, J=1.7 \mathrm{~Hz}), 55.5,51.3(\mathrm{q}, J=29.3 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR ( $471 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-70.6$; HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{25} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{NO}_{2}[\mathrm{M}-\mathrm{H}]^{-} 420.1217$, found 420.1222; HPLC: the ee value was determined by HPLC analysis (Chiralpak AS-H, $i-\mathrm{PrOH} / \mathrm{hexane}=$ $15 / 85,1.0 \mathrm{~mL} / \mathrm{min}, 225 \mathrm{~nm})$, retention time: $\mathrm{t}_{\text {minor }}=16.943 \mathrm{~min}, \mathrm{t}_{\text {major }}=19.467 \mathrm{~min}$, ee $=92.3 \% ;[\alpha]_{\mathrm{D}}{ }^{30}$ $=-113.6\left(\mathrm{c}=0.99, \mathrm{CHCl}_{3}\right)$.

( S )-4-(1,1,1-Trifluoro-2-(1H-indol-3-yl)-4-(2-methoxyphenyl)but-3-yn-2-yl)phenol (4g)
It was purified by silica gel chromatography using EtOAc/petroleum ether (1:4). Yield: 81\% (34.0 $\mathrm{mg}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.16(\mathrm{brs}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.38(\mathrm{~m}, 3 \mathrm{H})$, $7.36-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.13(\mathrm{~m}, 1 \mathrm{H}), 6.98-6.95(\mathrm{~m}, 1 \mathrm{H}), 6.89-6.85(\mathrm{~m}$, $2 \mathrm{H}), 6.76(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 160.9,155.6,136.6$, $133.7,130.8,130.2,129.3,125.8(\mathrm{q}, ~ J=284.3 \mathrm{~Hz}), 125.7,123.1(\mathrm{q}, J=2.4 \mathrm{~Hz}), 122.5,121.7,120.5$, $119.9,115.1,112.7,112.1,111.2,111.0,90.1(\mathrm{q}, J=1.4 \mathrm{~Hz}), 83.1,56.0,51.4(\mathrm{q}, J=29.2 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR ( $471 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-70.5$; HRMS (ESI) m/z calculated for $\mathrm{C}_{25} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{NO}_{2}[\mathrm{M}-\mathrm{H}]^{-}$420.1217, found 420.1219; HPLC: the ee value was determined by HPLC analysis (Chiralpak AS-H, $i-\mathrm{PrOH} /$ hexane $=15 / 85,1.0 \mathrm{~mL} / \mathrm{min}, 291 \mathrm{~nm}$ ), retention time: $\mathrm{t}_{\text {minor }}=23.080 \mathrm{~min}, \mathrm{t}_{\text {major }}=26.093 \mathrm{~min}$, $\mathrm{ee}=96.2 \% ;[\alpha]_{\mathrm{D}}{ }^{30}=-79.4\left(\mathrm{c}=0.99, \mathrm{CHCl}_{3}\right)$.

(S)-4-(1,1,1-Trifluoro-2-(1H-indol-3-yl)-4-(naphthalen-2-yl)but-3-yn-2-yl)phenol (4h)

It was purified by silica gel chromatography using EtOAc/petroleum ether (1:4). Yield: 67\% (29.5 $\mathrm{mg}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.17(\mathrm{brs}, 1 \mathrm{H}), 8.00(\mathrm{~s}, 1 \mathrm{H}), 7.81-7.74(\mathrm{~m}, 3 \mathrm{H}), 7.58(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.53-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.44-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.04-6.99(\mathrm{~m}, 1 \mathrm{H}), 6.78(\mathrm{~d}$, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.99(\mathrm{brs}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.8,136.6,133.2,133.1,132.1$, 130.7, 129.1, 128.7, 128.1, 128.0, 128.0, 127.0, 126.8, 125.8 (q, $J=284.3 \mathrm{~Hz}$ ), 125.7, 123.1 (q, $J=$ $2.2 \mathrm{~Hz}), 122.7,121.3,120.1,119.9,115.2,112.6,111.4,86.9,86.5(\mathrm{q}, J=1.6 \mathrm{~Hz}), 51.3(\mathrm{q}, J=29.4$ Hz ); ${ }^{19} \mathrm{~F}$ NMR ( $471 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-70.5$; HRMS (ESI) m/z calculated for $\mathrm{C}_{28} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{NO}[\mathrm{M}-\mathrm{H}]^{-}$ 440.1268, found 440.1257; HPLC: the ee value was determined by HPLC analysis (Chiralpak AS-H, $i-\mathrm{PrOH} /$ hexane $=20 / 80,1.0 \mathrm{~mL} / \mathrm{min}, 290 \mathrm{~nm}$ ), retention time: $\mathrm{t}_{\text {minor }}=10.457 \mathrm{~min}, \mathrm{t}_{\text {major }}=12.797 \mathrm{~min}$, $\mathrm{ee}=92.1 \% ;[\alpha]_{\mathrm{D}}{ }^{30}=-63.7\left(\mathrm{c}=1.03, \mathrm{CHCl}_{3}\right)$.

(S)-4-(1,1,1-Trifluoro-2-(1H-indol-3-yl)-4-(thiophen-3-yl)but-3-yn-2-yl)phenol (4i)

It was purified by silica gel chromatography using EtOAc/petroleum ether (1:4). Yield: 83\% (32.8 $\mathrm{mg}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.18$ (brs, 1 H ), 7.51 (d, $\left.J=8.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.49-7.45(\mathrm{~m}, 1 \mathrm{H})$, $7.40-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.14-7.11(\mathrm{~m}$, $1 \mathrm{H}), 7.00-6.95(\mathrm{~m}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 155.8,136.6$, 130.7, 130.2, 129.6, 129.0, 125.7 ( $\mathrm{q}, ~ J=284.2 \mathrm{~Hz}$ ), $125.7,125.5,123.1(\mathrm{q}, J=2.7 \mathrm{~Hz}), 122.6,121.6$, $121.3,120.1,115.2,112.5,111.4,85.8(\mathrm{q}, J=1.6 \mathrm{~Hz}), 81.7,51.3(\mathrm{q}, J=29.4 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR ( 471 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-70.6$; HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{22} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{NOS}[\mathrm{M}-\mathrm{H}]-396.0675$, found 396.0683; HPLC: the ee value was determined by HPLC analysis (Chiralpak AS-H, $i-\mathrm{PrOH} / \mathrm{hexane}=$ $15 / 85,1.0 \mathrm{~mL} / \mathrm{min}, 215 \mathrm{~nm}$ ), retention time: $\mathrm{t}_{\text {minor }}=20.300 \mathrm{~min}, \mathrm{t}_{\text {major }}=22.877 \mathrm{~min}$, ee $=96.2 \% ;[\alpha]_{\mathrm{D}}{ }^{30}$ $=-93.8\left(\mathrm{c}=0.98, \mathrm{CHCl}_{3}\right)$.

(S)-2,6-Dimethoxy-4-(1,1,1-trifluoro-2-(1H-indol-3-yl)-4-phenylbut-3-yn-2-yl)phenol (4j)

It was purified by silica gel chromatography using EtOAc/petroleum ether (1:4). Yield: 63\% (28.5 $\mathrm{mg}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.27$ (brs, 1 H ), $7.50-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.35-$ $7.27(\mathrm{~m}, 3 \mathrm{H}), 7.19-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.03-6.98(\mathrm{~m}, 1 \mathrm{H}), 6.96(\mathrm{~s}, 2 \mathrm{H}), 5.59(\mathrm{brs}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 146.7, 136.6, 135.1, 132.0, 128.9, 128.5, 127.8, 125.8 (q, $J=284.4 \mathrm{~Hz}$ ), $125.8,123.2(\mathrm{q}, J=2.5 \mathrm{~Hz}), 122.6,122.6,121.3,120.1,112.4,111.4,106.7,86.7,86.2,56.6,51.9(\mathrm{q}$, $J=29.4 \mathrm{~Hz}$ ); ${ }^{19} \mathrm{~F}$ NMR ( $471 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-70.2$; HRMS (ESI) m/z calculated for $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{NO}_{3}[\mathrm{M}$ - H$]^{-} 450.1323$, found 450.1327 ; HPLC: the the ee value was determined by HPLC analysis (Chiralpak IG, $i$-PrOH/hexane $=20 / 80,1.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$ ), retention time: $\mathrm{t}_{\text {minor }}=7.267 \mathrm{~min}, \mathrm{t}_{\text {minor }}$ $=10.190 \mathrm{~min}, \mathrm{ee}=83.0 \% ;[\alpha]_{\mathrm{D}}{ }^{30}=-9.6\left(\mathrm{c}=1.04, \mathrm{CHCl}_{3}\right)$.

(S)-2,6-Dimethyl-4-(1,1,1-trifluoro-2-(1H-indol-3-yl)-4-phenylbut-3-yn-2-yl)phenol (4k)

It was purified by silica gel chromatography using EtOAc/petroleum ether (1:4). Yield: 76\% (32.0 $\mathrm{mg}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.14(\mathrm{brs}, 1 \mathrm{H}), 7.52-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.39-$ $7.35(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.20-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.03-6.98(\mathrm{~m}, 1 \mathrm{H}), 4.65(\mathrm{brs}, 1 \mathrm{H}), 2.20(\mathrm{~s}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 152.4,136.6,132.1,129.3,128.7,128.4,128.0,125.9$ (q, $J=$ $284.2 \mathrm{~Hz}), 125.8,123.0(\mathrm{q}, ~ J=2.3 \mathrm{~Hz}), 122.8,122.7,122.5,121.4,120.0,112.8,111.3,86.5(\mathrm{q}, J=$ 1.1 Hz ), 86.4, $51.3\left(\mathrm{q}, J=28.1 \mathrm{~Hz}\right.$ ), 16.3; ${ }^{19}$ F NMR ( $471 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-70.4 ;$ HRMS (ESI) m/z calculated for $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{NO}[\mathrm{M}-\mathrm{H}]^{-} 418.1424$, found 418.1432; HPLC: the the ee value was determined by HPLC analysis (Chiralpak IG, $i-\mathrm{PrOH} /$ hexane $=5 / 95,1.0 \mathrm{~mL} / \mathrm{min}, 241 \mathrm{~nm}$ ), retention time: $\mathrm{t}_{\text {minor }}=10.850 \mathrm{~min}, \mathrm{t}_{\text {major }}=16.043 \mathrm{~min}, \mathrm{ee}=90.5 \% ;[\alpha]_{\mathrm{D}}{ }^{30}=-67.4\left(\mathrm{c}=0.99, \mathrm{CHCl}_{3}\right)$.

(S)-2,6-Dimethyl-4-(1,1,1-trifluoro-2-(1H-indol-3-yl)oct-3-yn-2-yl)phenol (4I)

It was prepared using $\mathbf{3} \mathbf{b}$ with 1.1 equiv of $\mathbf{2 a}$ without $\mathrm{K}_{2} \mathrm{CO}_{3}$ additive and asymmetric nucleophilic addition was performed at $0{ }^{\circ} \mathrm{C}$. Then it was purified by silica gel chromatography using EtOAc/petroleum ether (1:4). Yield: $73 \%$ ( 29.3 mg ). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.08$ (brs, 1 H ), $7.37-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.22(\mathrm{~s}, 2 \mathrm{H}), 7.19-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.00-6.94(\mathrm{~m}, 1 \mathrm{H}), 2.31(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, $2.19(\mathrm{~s}, 6 \mathrm{H}), 1.61-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.41(\mathrm{~m}, 2 \mathrm{H}), 0.92(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 152.2,136.6,129.4,128.5,126.0(\mathrm{q}, J=283.9 \mathrm{~Hz}), 125.8,122.8(\mathrm{q}, J=2.5 \mathrm{~Hz}), 122.5$, 122.4, 121.6, 119.7, 113.4, 111.2, 77.32 - $77.28(\mathrm{~m}), 87.2,50.6(\mathrm{q}, ~ J=28.7 \mathrm{~Hz}), 30.7,22.1,18.7$, 16.3, 13.8; ${ }^{19}$ F NMR ( $471 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-70.8$; HRMS (ESI) m/z calculated for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{NO}$ [M H] 398.1737 , found 398.1746 ; HPLC: the ee value was determined by HPLC analysis (Chiralpak IG, $i-\mathrm{PrOH} / \mathrm{hexane}=5 / 95,1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$ ), retention time: $\mathrm{t}_{\text {major }}=7.550 \mathrm{~min}, \mathrm{t}_{\text {minor }}=8.260 \mathrm{~min}$, ee $=$ $92.7 \% ;[\alpha]_{\mathrm{D}}{ }^{30}=+32.2\left(\mathrm{c}=0.96, \mathrm{CHCl}_{3}\right)$.

(S)-2,6-Dimethyl-4-(1,1,1-trifluoro-2-(1H-indol-3-yl)dec-3-yn-2-yl)phenol (4m)

It was prepared using $\mathbf{3 b}$ with 1.1 equiv of $\mathbf{2 a}$ without $\mathrm{K}_{2} \mathrm{CO}_{3}$ additive and asymmetric nucleophilic addition was performed at $0{ }^{\circ} \mathrm{C}$. Then it was purified by silica gel chromatography using EtOAc/petroleum ether (1:4). Yield: $71 \%$ ( 30.2 mg ). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.07$ (brs, 1 H ), $7.37-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.22(\mathrm{~s}, 2 \mathrm{H}), 7.19-7.14(\mathrm{~m}, 1 \mathrm{H}), 7.00-6.94(\mathrm{~m}, 1 \mathrm{H}), 4.64$ (brs, 1 H$), 2.32-$ 2.28 (m, 2H), 2.19 (s, 6H), 1.61 - 1.54 (m, 2H), 1.47 - 1.40 (m, 2H), 1.33 - 1.27 (m, 4H), 0.92 $0.87(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 152.2,136.6,129.4,128.5,126.0(\mathrm{q}, J=283.9 \mathrm{~Hz})$, 125.8, 122.8 (q, $J=2.4 \mathrm{~Hz}$ ), 122.5, 122.4, 121.5, 119.7, 113.4, 111.2, 87.3, $77.35-77.30$ (m), 50.6 ( $\mathrm{q}, J=29.0 \mathrm{~Hz}$ ) , 31.5, 28.7, 28.6, 22.8, 19.1, 16.3, 14.2; ${ }^{19} \mathrm{~F}$ NMR ( $471 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-70.8$; HRMS (ESI) m/z calculated for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{NO}[\mathrm{M}-\mathrm{H}]^{-} 426.2050$, found 426.2062; HPLC: the ee
value was determined by HPLC analysis (Chiralpak IG, $i-\mathrm{PrOH} / \mathrm{hexane}=3 / 97,1.0 \mathrm{~mL} / \mathrm{min}, 215 \mathrm{~nm}$ ), retention time: $\mathrm{t}_{\text {major }}=11.460 \mathrm{~min}, \mathrm{t}_{\text {minor }}=13.030 \mathrm{~min}$, $\mathrm{ee}=91.2 \% ;[\alpha]_{\mathrm{D}}{ }^{30}=+27.1\left(\mathrm{c}=1.03, \mathrm{CHCl}_{3}\right)$.

(S)-2,6-Dimethyl-4-(1,1,1-trifluoro-6-hydroxy-2-(1H-indol-3-yl)hex-3-yn-2-yl)phenol (4n)

It was prepared using $\mathbf{3 b}$ with 1.1 equiv of $\mathbf{2 a}$ without $\mathrm{K}_{2} \mathrm{CO}_{3}$ additive and asymmetric nucleophilic addition was performed at $0{ }^{\circ} \mathrm{C}$. Then it was purified by silica gel chromatography using EtOAc/petroleum ether (1:4). Yield: $70 \%$ ( 30.1 mg ). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.18$ (brs, 1 H ), $7.35-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.20(\mathrm{~s}, 2 \mathrm{H}), 7.17-7.12(\mathrm{~m}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.98-6.93(\mathrm{~m}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.55(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.18(\mathrm{~s}, 6 \mathrm{H}), 1.62-1.49(\mathrm{~m}, 4 \mathrm{H}), 1.48-1.40(\mathrm{~m}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 152.3,136.6,129.3,128.4,126.0$ ( $\mathrm{q}, ~ J=284.1 \mathrm{~Hz}$ ), 125.8, $122.8(\mathrm{q}, J=2.3 \mathrm{~Hz}), 122.6,122.4,121.5,119.6,113.3,111.3,86.8,77.7(\mathrm{q}, J=1.8 \mathrm{~Hz}), 63.0,50.6$ ( $\mathrm{q}, J=28.4 \mathrm{~Hz}$ ), 32.4, 28.3, 25.0, 19.0, 16.3; ${ }^{19}$ F NMR ( $471 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-70.8 ;$ HRMS (ESI) m/z calculated for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{NO}_{2}[\mathrm{M}-\mathrm{H}]^{-} 428.1843$, found 428.1840; HPLC: the ee value was determined by HPLC analysis (Chiralpak AD-H, $i-\mathrm{PrOH} /$ hexane $=20 / 80,1.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$ ), retention time: $\mathrm{t}_{\text {minor }}=7.697 \mathrm{~min}, \mathrm{t}_{\text {major }}=9.317 \mathrm{~min}$, ee $=91.2 \% ;[\alpha]_{\mathrm{D}}{ }^{30}=+50.8\left(\mathrm{c}=1.01, \mathrm{CHCl}_{3}\right)$.

(S)-4-(5-Chloro-1,1,1-trifluoro-2-(1H-indol-3-yl)pent-3-yn-2-yl)-2,6-dimethylphenol (40)

It was prepared using $\mathbf{3 b}$ with 1.1 equiv of $\mathbf{2 a}$ without $\mathrm{K}_{2} \mathrm{CO}_{3}$ additive. Then it was purified by silica gel chromatography using EtOAc/petroleum ether (1:4). Yield: 66\% ( 25.7 mg ). ${ }^{1} \mathrm{H}$ NMR ( 500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.12(\mathrm{brs}, 1 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.15(\mathrm{~m}, 3 \mathrm{H}), 7.03-$ $6.97(\mathrm{~m}, 1 \mathrm{H}), 4.22(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.19(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 152.5,136.5$, $129.2,127.3,125.6(\mathrm{q}, ~ J=284.3 \mathrm{~Hz}), 125.6,123.2(\mathrm{q}, J=2.6 \mathrm{~Hz}), 122.8,122.6,121.3,120.1,112.1$, 111.4, $83.8(\mathrm{q}, J=1.7 \mathrm{~Hz}), 81.2,50.8(\mathrm{q}, J=29.2 \mathrm{~Hz}), 30.7,16.3 ;{ }^{19} \mathrm{~F}$ NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ -70.3; HRMS (ESI) m/z calculated for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{ClF}_{3} \mathrm{NO}[\mathrm{M}-\mathrm{H}]-390.0878$, found 390.0887; HPLC:
the ee value was determined by HPLC analysis (Chiralpak AS-H, $i-\mathrm{PrOH} / \mathrm{hexane}=15 / 85,1.0 \mathrm{~mL} / \mathrm{min}$, $225 \mathrm{~nm})$, retention time: $\mathrm{t}_{\text {major }}=15.707 \mathrm{~min}, \mathrm{t}_{\text {minor }}=19.847 \mathrm{~min}, \mathrm{ee}=86.2 \% ;[\alpha]_{\mathrm{D}}{ }^{30}=+42.8(\mathrm{c}=1.00$, $\mathrm{CHCl}_{3}$ ).

(R)-4-(4-(tert-Butyldimethylsilyl)-1,1,1-trifluoro-2-(1H-indol-3-yl)but-3-yn-2-yl)-2,6-dimethylph enol (4p)

It was prepared using $\mathbf{3 b}$ with 1.1 equiv of $\mathbf{2 a}$ without $\mathrm{K}_{2} \mathrm{CO}_{3}$ additive. Then it was purified by silica gel chromatography using EtOAc/petroleum ether (1:4). Yield: 70\% (31.8 mg). ${ }^{1} \mathrm{H}$ NMR ( 500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.94(\mathrm{brs}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.21(\mathrm{~m}, 4 \mathrm{H}), 7.20-7.14(\mathrm{~m}, 1 \mathrm{H}), 7.04-$ $6.96(\mathrm{~m}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 6 \mathrm{H}), 1.01(\mathrm{~s}, 9 \mathrm{H}), 0.15(\mathrm{~s}, 3 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 152.3, 136.5, 129.4, 127.9, 125.7 (q, $J=284.2 \mathrm{~Hz}), 125.6,123.1(\mathrm{q}, ~ J=2.5 \mathrm{~Hz}), 122.6,122.5,121.6$, 119.7, 112.2, 111.3, 102.9, $90.2,51.5(\mathrm{q}, J=28.8 \mathrm{~Hz}), 26.3,17.0,16.3,-4.7,-4.7 ;{ }^{19}$ F NMR ( 471 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-70.5$; HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{~F}_{3} \mathrm{NOSi}[\mathrm{M}-\mathrm{H}]^{-} 456.1976$, found 456.1968; HPLC: the ee value was determined by HPLC analysis (ChiralcelOD-H, $i-\mathrm{PrOH} / \mathrm{hexane}=$ $5 / 95,1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$ ), retention time: $\mathrm{t}_{\text {major }}=12.580 \mathrm{~min}, \mathrm{t}_{\text {minor }}=14.453 \mathrm{~min}, \mathrm{ee}=93.1 \% ;[\alpha]_{\mathrm{D}}{ }^{30}=$ $+60.8\left(\mathrm{c}=1.02, \mathrm{CHCl}_{3}\right)$.


## (S)-4-(2,2,2-Trifluoro-1-(1H-indol-3-yl)-1-phenylethyl)phenol (6a)

It was prepared using $\mathbf{3 d}$ with 1.1 equiv of $\mathbf{2 a}$ without $\mathrm{K}_{2} \mathrm{CO}_{3}$ additive. Then it was purified by silica gel chromatography using EtOAc/petroleum ether (1:4). Yield: 77\% (28.2 mg). ${ }^{1} \mathrm{H}$ NMR ( 500 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.36(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.23(\mathrm{~m}, 5 \mathrm{H}), 7.10(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.07-7.03(\mathrm{~m}$, $1 \mathrm{H}), 6.89(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.82-6.78(\mathrm{~m}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ) $\delta 157.8,141.7,138.6,132.1,131.9,130.8,129.7(\mathrm{q}, J=285.8 \mathrm{~Hz}), 128.8,128.4$, 128.0, 127.6, 122.9, 122.5, 119.9, 116.3, 115.5, 112.4, 61.1 ( $\mathrm{q}, J=25.0 \mathrm{~Hz}$ ); ${ }^{19} \mathrm{~F}$ NMR ( 471 MHz ,
$\mathrm{CD}_{3} \mathrm{OD}$ ) $\delta-61.9$; HRMS (ESI) m/z calculated for $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{NO}[\mathrm{M}-\mathrm{H}]-366.1111$, found 366.1123; HPLC: the the ee value was determined by HPLC analysis (Chiralpak AD-H, $i$-PrOH/hexane $=10 / 90$, $1.0 \mathrm{~mL} / \mathrm{min}, 227 \mathrm{~nm}$ ), retention time: $\mathrm{t}_{\text {major }}=20.460 \mathrm{~min}, \mathrm{t}_{\text {minor }}=24.720 \mathrm{~min}$, ee $=93.2 \% ;[\alpha]_{\mathrm{D}}{ }^{30}=-1.8$ $\left(\mathrm{c}=0.97, \mathrm{CHCl}_{3}\right)$.

( $R$ )-4-(2,2,2-Trifluoro-1-(1H-indol-3-yl)-1-(4-methoxyphenyl)ethyl)phenol (6b)
It was prepared using $\mathbf{3 d}$ with 1.1 equiv of $\mathbf{2 a}$ without $\mathrm{K}_{2} \mathrm{CO}_{3}$ additive. Then it was purified by silica gel chromatography using EtOAc/petroleum ether (1:4). Yield: 70\% (27.8 mg). ${ }^{1} \mathrm{H}$ NMR ( 500 MHz , DMSO- $d_{6}$ ) $\delta 11.20($ brs, 1 H$), 9.57(\mathrm{brs}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.07$ - 7.02 (m, 1H), $7.00(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.83-6.79(\mathrm{~m}, 1 \mathrm{H}), 6.77-6.71$ $(\mathrm{m}, 4 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 126 MHz, DMSO- $d_{6}$ ) $\delta 158.3,156.6,136.9,131.5,130.3,129.6$, $129.6,128.3(\mathrm{q}, J=286.3 \mathrm{~Hz}), 126.8,125.8,121.1,121.1,118.8,114.8,114.2,113.4,111.9,58.5(\mathrm{q}$, $J=24.3 \mathrm{~Hz}$ ), $55.0 ;{ }^{19} \mathrm{~F}$ NMR ( 471 MHz , DMSO- $d_{6}$ ) $\delta-60.5$; HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{NO}_{2}[\mathrm{M}-\mathrm{H}]^{-} 396.1217$, found 396.1211; HPLC: the the ee value was determined by HPLC analysis (Chiralpak AD-H, $i-\operatorname{PrOH} /$ hexane $=20 / 80,1.0 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm}$ ), retention time: $\mathrm{t}_{\text {major }}=8.960$ $\min , \mathrm{t}_{\text {minor }}=10.687 \mathrm{~min}$, ee $=91.2 \% ;[\alpha]_{\mathrm{D}}{ }^{30}=-1.6\left(\mathrm{c}=0.11, \mathrm{CHCl}_{3}\right)$.

(S)-4-(2,2,2-Trifluoro-1-(1H-indol-3-yl)-1-(p-tolyl)ethyl)phenol (6c)

It was prepared using $\mathbf{3 d}$ with 1.1 equiv of $\mathbf{2 a}$ without $\mathrm{K}_{2} \mathrm{CO}_{3}$ additive. Then it was purified by silica gel chromatography using EtOAc/petroleum ether (1:4). Yield: 67\% (25.7 mg). ${ }^{1} \mathrm{H}$ NMR ( 500 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.35(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.11-7.02(\mathrm{~m}, 5 \mathrm{H}), 6.91-6.87(\mathrm{~m}, 1 \mathrm{H})$, $6.81-6.77(\mathrm{~m}, 1 \mathrm{H}), 6.72-6.66(\mathrm{~m}, 3 \mathrm{H}), 2.32-2.28(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta$
157.7, 138.7, 138.6, 138.2, 132.2, 132.1, 130.7, 129.8 (q, $J=285.5 \mathrm{~Hz}$ ), 129.5, 127.9, 127.7, 123.0, $122.4,119.9,116.5,115.5,112.4,60.8(\mathrm{q}, J=24.6 \mathrm{~Hz}), 20.9 ;{ }^{19} \mathrm{~F}$ NMR ( $471 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ) $\delta-61.9$; HRMS (ESI) m/z calculated for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{NO}[\mathrm{M}-\mathrm{H}]^{-} 380.1268$, found 380.1263 ; HPLC:the the ee value was determined by HPLC analysis (Chiralpak AD-H, $i-\mathrm{PrOH} /$ hexane $=15 / 85,0.3 \mathrm{~mL} / \mathrm{min}, 215$ $\mathrm{nm})$, retention time: $\mathrm{t}_{\text {major }}=36.220 \mathrm{~min}, \mathrm{t}_{\text {minor }}=38.910 \mathrm{~min}, \mathrm{ee}=90.3 \% ;[\alpha]_{\mathrm{D}}{ }^{30}=-2.3\left(\mathrm{c}=1.04, \mathrm{CHCl}_{3}\right)$.

(R)-4-(1-(4-Chlorophenyl)-2,2,2-trifluoro-1-(1H-indol-3-yl)ethyl)phenol (6d)

It was prepared using $\mathbf{3 d}$ with 1.1 equiv of $\mathbf{2 a}$ without $\mathrm{K}_{2} \mathrm{CO}_{3}$ additive. Then it was purified by silica gel chromatography using EtOAc/petroleum ether (1:4). Yield: $62 \%(24.7 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ( 500 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.36(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.11-7.04(\mathrm{~m}, 3 \mathrm{H}), 6.88-6.80(\mathrm{~m}, 2 \mathrm{H})$, $6.74-6.69(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ) $\delta 158.1,140.5,138.6,134.6,132.5,132.0,131.4$, $129.53(\mathrm{q}, ~ J=285.6 \mathrm{~Hz}), 129.0,128.0,127.4,122.7,122.6,120.1,115.8,115.7,112.5,60.8(\mathrm{q}, J=$ 25.1 Hz ); ${ }^{19} \mathrm{~F}$ NMR ( $471 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ) $\delta-61.8$; HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{ClF}_{3} \mathrm{NO}[\mathrm{M}$ - H$]^{-}$400.0721, found 400.0713 ; HPLC: the the ee value was determined by HPLC analysis (Chiralpak AD-H, $i-\mathrm{PrOH} / \mathrm{hexane}=15 / 85,0.8 \mathrm{~mL} / \mathrm{min}, 215 \mathrm{~nm})$, retention time: $\mathrm{t}_{\text {major }}=10.847 \mathrm{~min}$, $\mathrm{t}_{\text {minor }}=12.213 \mathrm{~min}$, ee $=91.0 \% ;[\alpha]_{\mathrm{D}}{ }^{30}=-4.1\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right)$.


## (R)-4-(2,2,2-Trifluoro-1-(1H-indol-3-yl)-1-(3-methoxyphenyl)ethyl)phenol (6e)

It was prepared using $\mathbf{3 d}$ with 1.1 equiv of $\mathbf{2 a}$ without $\mathrm{K}_{2} \mathrm{CO}_{3}$ additive. Then it was purified by silica gel chromatography using EtOAc/petroleum ether (1:4). Yield: 58\% (23.0 mg). ${ }^{1} \mathrm{H}$ NMR ( 500 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.36(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.03(\mathrm{~m}, 3 \mathrm{H}), 6.94-6.88(\mathrm{~m}, 2 \mathrm{H})$, $6.88-6.79(\mathrm{~m}, 3 \mathrm{H}), 6.73-6.69(\mathrm{~m}, 3 \mathrm{H}), 3.63-3.60(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $\left.126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta$
160.7, 157.8, 143.2, 138.6, 132.1, 131.9, 129.7, 129.7 (q, $J=285.6 \mathrm{~Hz}$ ), 128.0, 127.6, 123.2, 122.9, $122.5,119.9,117.4,116.2,115.5,113.4,112.4,61.1(\mathrm{q}, J=25.3 \mathrm{~Hz}), 55.5 ;{ }^{19} \mathrm{~F}$ NMR ( 471 MHz , $\mathrm{CD}_{3} \mathrm{OD}$ ) $\delta$-61.8; HRMS (ESI) m/z calculated for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{NO}_{2}[\mathrm{M}-\mathrm{H}]^{-} 396.1217$, found 396.1219; HPLC: the the ee value was determined by HPLC analysis (Chiralpak AD-H, $i-\mathrm{PrOH} /$ hexane $=15 / 85$, $1.0 \mathrm{~mL} / \mathrm{min}, 232 \mathrm{~nm}$ ), retention time: $\mathrm{t}_{\text {major }}=11.793 \mathrm{~min}, \mathrm{t}_{\text {minor }}=13.543 \mathrm{~min}$, ee $=91.0 \% ;[\alpha]_{\mathrm{D}}{ }^{30}=-1.2$ $\left(\mathrm{c}=0.92, \mathrm{CHCl}_{3}\right)$.

( S )-2,6-Dimethyl-4-(2,2,2-trifluoro-1-( 1 H -indol-3-yl)-1-phenylethyl)phenol (6f)
It was prepared using $\mathbf{3 d}$ with 1.1 equiv of $\mathbf{2 a}$ without $\mathrm{K}_{2} \mathrm{CO}_{3}$ additive. Then it was purified by silica gel chromatography using EtOAc/petroleum ether (1:4). Yield: 77\% (30.3 mg). ${ }^{1} \mathrm{H}$ NMR ( 500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.11$ (brs, 1H), $7.38-7.30(\mathrm{~m}, 6 \mathrm{H}), 7.19-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.06-7.02(\mathrm{~m}, 1 \mathrm{H}), 6.97-6.91$ $(\mathrm{m}, 3 \mathrm{H}), 6.70-6.67(\mathrm{~m}, 1 \mathrm{H}), 2.16(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 151.7,140.3,136.9$, 131.4, $130.2(\mathrm{q}, ~ J=2.0 \mathrm{~Hz}), 129.9(\mathrm{q}, J=2.0 \mathrm{~Hz}), 128.4(\mathrm{q}, J=286.6 \mathrm{~Hz}), 128.1,127.6,126.9$, 126.6, $122.7(\mathrm{q}, ~ J=3.0 \mathrm{~Hz}), 122.5,122.3,120.0,116.7,111.3,60.1(\mathrm{q}, J=25.0 \mathrm{~Hz}), 16.4 ;{ }^{19} \mathrm{~F}$ NMR (471 MHz, $\mathrm{CDCl}_{3}$ ) $\delta-60.3$; HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{NO}[\mathrm{M}-\mathrm{H}]^{-} 394.1424$, found 394.1432; HPLC: the ee value was determined by HPLC analysis (Chiralpak AD-H, $i-\mathrm{PrOH} /$ hexane $=$ $10 / 90,1.0 \mathrm{~mL} / \mathrm{min}, 215 \mathrm{~nm}$ ), retention time: $\mathrm{t}_{\text {major }}=13.397 \mathrm{~min}, \mathrm{t}_{\text {minor }}=14.537 \mathrm{~min}$, ee $=96.5 \% ;[\alpha]_{\mathrm{D}}{ }^{30}$ $=-3.6\left(\mathrm{c}=1.01, \mathrm{CHCl}_{3}\right)$.

(S)-4-(1,1,1-Trifluoro-2-(5-methoxy-1 H-indol-3-yl)-4-phenylbut-3-yn-2-yl)phenol (7a)

It was purified by silica gel chromatography using EtOAc/petroleum ether (1:4). Yield: 88\% ( 37.1 mg ). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.1$ (brs, 1 H ), $7.55-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.46(\mathrm{~m}, 2 \mathrm{H})$, $7.38-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.24(\mathrm{~m}, 1 \mathrm{H}), 6.85-6.81(\mathrm{~m}, 1 \mathrm{H}), 6.79-6.75(\mathrm{~m}$, 3 H ), $3.61(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 155.5,153.8,131.9,131.5,130.5,128.8,128.6$, $128.3,126.1,125.6(\mathrm{q}, J=284.2 \mathrm{~Hz}), 123.5(\mathrm{q}, J=2.7 \mathrm{~Hz}), 122.5,115.0,112.7,112.1,111.8,102.9$,
86.3, $86.0(\mathrm{q}, J=1.9 \mathrm{~Hz}), 55.7,51.0(\mathrm{q}, J=29.2 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR ( $471 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-70.6$; HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{25} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{NO}_{2}[\mathrm{M}-\mathrm{H}]^{-} 420.1217$, found 420.1215; HPLC: the ee value was determined by HPLC analysis (Chiralpak AD-H, $i$-PrOH/hexane $=20 / 80,1.0 \mathrm{~mL} / \mathrm{min}, 215 \mathrm{~nm}$ ), retention time: $\mathrm{t}_{\text {minor }}=8.703 \mathrm{~min}, \mathrm{t}_{\text {major }}=10.577 \mathrm{~min}$, ee $=95.3 \% ;[\alpha]_{\mathrm{D}}{ }^{30}=-112.5\left(\mathrm{c}=1.08, \mathrm{CHCl}_{3}\right)$.

( S)-4-(1,1,1-Trifluoro-2-(5-methyl-1H-indol-3-yl)-4-phenylbut-3-yn-2-yl)phenol (7b)
It was purified by silica gel chromatography using EtOAc/petroleum ether (1:4). Yield: 85\% (34.3 mg ). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.04$ (brs, 1 H ), $7.54(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.51-7.47(\mathrm{~m}, 2 \mathrm{H})$, 7.35 - 7.29 (m, 4H), 7.25 (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{dd}, J=8.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.76$ (d, $J$ $=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.6,134.9,132.0,130.6,129.2,129.1$, $128.8,128.5,125.9,125.8(\mathrm{q}, J=284.2 \mathrm{~Hz}), 124.3,123.3(\mathrm{q}, J=2.6 \mathrm{~Hz}), 122.7,120.9,115.2,111.9$, 111.0, 86.5-86.4 (m), 51.3 (q, $J=29.2 \mathrm{~Hz}$ ), $21.8 ;{ }^{19} \mathrm{~F}$ NMR ( $471 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-70.5$; HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{25} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{NO}[\mathrm{M}-\mathrm{H}]^{-} 404.1268$, found 404.1263; HPLC: the ee value was determined by HPLC analysis (Chiralpak AD-H, $i-\mathrm{PrOH} / \mathrm{hexane}=10 / 90,1.0 \mathrm{~mL} / \mathrm{min}, 239 \mathrm{~nm}$ ), retention time: $\mathrm{t}_{\text {minor }}=25.420 \mathrm{~min}, \mathrm{t}_{\text {major }}=27.323 \mathrm{~min}$, ee $=90.3 \% ;[\alpha]_{\mathrm{D}}{ }^{30}=-146.5\left(\mathrm{c}=1.03, \mathrm{CHCl}_{3}\right)$.

( S )-4-(1,1,1-Trifluoro-2-(5-iodo-1H-indol-3-yl)-4-phenylbut-3-yn-2-yl)phenol (7c)
It was purified by silica gel chromatography using EtOAc/petroleum ether (1:4). Yield: 82\% (42.2 $\mathrm{mg}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.20(\mathrm{brs}, 1 \mathrm{H}), 7.83-7.79(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.48(\mathrm{~m}, 4 \mathrm{H}), 7.44-$ $7.41(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.16-7.11(\mathrm{~m}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.97$ (brs, 1 H$) ;{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 155.7,135.5,131.9,131.0,130.4,129.9,128.8,128.4,128.0,125.4$ (q, $J$ $=284.1 \mathrm{~Hz}), 123.6(\mathrm{q}, J=2.5 \mathrm{~Hz}), 122.2,115.2,113.3,111.8,86.8,85.7(\mathrm{q}, J=1.7 \mathrm{~Hz}), 83.6,50.9$ $(\mathrm{q}, J=29.6 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR ( $471 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-70.7$; HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{24} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{INO}$ [ $\mathrm{M}-\mathrm{H}]^{-}$516.0078, found 516.0086; HPLC: the ee value was determined by HPLC analysis
(Chiralpak AD-H, $i-\mathrm{PrOH} / \mathrm{hexane}=20 / 80,1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$ ), retention time: $\mathrm{t}_{\text {major }}=5.477 \mathrm{~min}$, $\mathrm{t}_{\text {minor }}=8.657 \mathrm{~min}, \mathrm{ee}=95.1 \% ;[\alpha]_{\mathrm{D}}{ }^{30}=-122.2\left(\mathrm{c}=1.01, \mathrm{CHCl}_{3}\right)$.

(S)-4-(2-(5-Bromo-1H-indol-3-yl)-1,1,1-trifluoro-4-phenylbut-3-yn-2-yl)phenol (7d)

It was purified by silica gel chromatography using EtOAc/petroleum ether (1:4). Yield: 80\% (37.5 $\mathrm{mg}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.24(\mathrm{brs}, 1 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H}), 7.53-7.46(\mathrm{~m}, 4 \mathrm{H}), 7.41-7.39(\mathrm{~m}$, $1 \mathrm{H}), 7.35-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.25(\mathrm{~m}, 2 \mathrm{H}), 6.79(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 155.7,135.1,131.9,130.4,128.8,128.4,128.4,127.3,125.5,125.4(\mathrm{q}, J=284.2 \mathrm{~Hz})$, $124.0(\mathrm{q}, J=2.8 \mathrm{~Hz}), 123.6,122.2,115.2,113.3,112.7,112.2,86.7,85.6(\mathrm{q}, J=1.9 \mathrm{~Hz}), 50.9(\mathrm{q}, J=$ 29.5 Hz ); ${ }^{19} \mathrm{~F}$ NMR ( $471 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-70.7$; HRMS (ESI) m/z calculated for $\mathrm{C}_{24} \mathrm{H}_{14} \mathrm{BrF}_{3} \mathrm{NO}[\mathrm{M}-$ H] 468.0216, found 468.0220; HPLC: the ee value was determined by HPLC analysis (Chiralpak $\mathrm{AD}-\mathrm{H}, i-\mathrm{PrOH} /$ hexane $=20 / 80,1.0 \mathrm{~mL} / \mathrm{min}, 236 \mathrm{~nm}$ ), retention time: $\mathrm{t}_{\text {major }}=5.623 \mathrm{~min}, \mathrm{t}_{\text {minor }}=6.840$ $\min , \mathrm{ee}=95.4 \% ;[\alpha]_{\mathrm{D}}{ }^{30}=-125.0\left(\mathrm{c}=1.04, \mathrm{CHCl}_{3}\right)$.

(S)-3-(1,1,1-Trifluoro-2-(4-hydroxyphenyl)-4-phenylbut-3-yn-2-yl)-1H-indole-5-carbonitrile (7e)

It was purified by silica gel chromatography using EtOAc/petroleum ether (1:4). Yield: 76\% (31.8 $\mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ) $\delta 7.60-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.41(\mathrm{~m}, 4 \mathrm{H})$, $7.39-7.33(\mathrm{~m}, 4 \mathrm{H}), 6.79(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 159.1,140.1,132.6$, 131.2, 130.1, 129.7, 128.1, 127.1, $126.9(\mathrm{q}, J=283.3 \mathrm{~Hz}), 126.7,125.6,123.3,121.5,116.1,114.0$, 113.9, 103.0, $87.8,86.9(\mathrm{q}, J=1.4 \mathrm{~Hz}), 52.2(\mathrm{q}, J=29.4 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-71.0$; HRMS (ESI) m/z calculated for $\mathrm{C}_{25} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}-\mathrm{H}]^{-} 415.1064$, found 415.1069; HPLC: the ee value was determined by HPLC analysis (Chiralpak AD-H, $i$-PrOH/hexane $=20 / 80,1.0 \mathrm{~mL} / \mathrm{min}, 247$ $\mathrm{nm})$, retention time: $\mathrm{t}_{\text {major }}=4.800 \mathrm{~min}, \mathrm{t}_{\text {minor }}=5.500 \mathrm{~min}$, $\mathrm{ee}=92.8 \% ;[\alpha]_{\mathrm{D}}{ }^{30}=-124.9(\mathrm{c}=1.01$, THF $)$.

(S)-4-(1,1,1-Trifluoro-2-(6-methyl-1 H-indol-3-yl)-4-phenylbut-3-yn-2-yl)phenol (7f)

It was purified by silica gel chromatography using EtOAc/petroleum ether (1:4). Yield: 81\% (32.8 $\mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.04$ (brs, 1 H ), 7.53 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$ ), $7.49-7.46(\mathrm{~m}, 2 \mathrm{H})$, $7.34-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.21(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H}), 6.82(\mathrm{dd}, J=8.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J$ $=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.84(\mathrm{brs}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.7,137.1,132.5$, 132.1, 130.7, 129.2, 128.8, 128.4, $125.8(\mathrm{q}, J=284.3 \mathrm{~Hz}), 123.6,122.7,122.5(\mathrm{q}, J=2.6 \mathrm{~Hz}), 121.9$, $120.9,115.2,112.5,111.3,86.4,86.4,51.2(\mathrm{q}, J=29.2 \mathrm{~Hz}), 21.8 ;{ }^{19} \mathrm{~F}$ NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ -70.6; HRMS (ESI) m/z calculated for $\mathrm{C}_{25} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{NO}[\mathrm{M}-\mathrm{H}]^{-} 404.1268$, found 404.1259; HPLC: the ee value was determined by HPLC analysis (Chiralpak AD-H, $i-\mathrm{PrOH} /$ hexane $=20 / 80,1.0 \mathrm{~mL} / \mathrm{min}$, 215 nm ), retention time: $\mathrm{t}_{\text {minor }}=8.347 \mathrm{~min}, \mathrm{t}_{\text {major }}=11.900 \mathrm{~min}, \mathrm{ee}=95.8 \% ;[\alpha]_{\mathrm{D}}{ }^{30}=-113.3(\mathrm{c}=0.97$, $\left.\mathrm{CHCl}_{3}\right)$.

(S)-4-(2-(6-Bromo-1H-indol-3-yl)-1,1,1-trifluoro-4-phenylbut-3-yn-2-yl)phenol (7g)

It was purified by silica gel chromatography using EtOAc/petroleum ether (1:4). Yield: 78\% (36.7 $\mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ) $\delta 7.55(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.38(\mathrm{~m}, 5 \mathrm{H}), 7.36-7.31(\mathrm{~m}$, $3 \mathrm{H}), 7.11(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{dd}, J=8.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 151 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 158.8,139.1,132.7,131.3,129.9,129.6,128.5,127.1$ ( $\mathrm{q}, J=283.1 \mathrm{~Hz}$ ), 125.8 , 125.2 ( $\mathrm{q}, ~ J=2.2 \mathrm{~Hz}$ ), 123.6, 123.2, 123.0, 116.3, 115.8, 115.4, 113.0, 87.3, 87.3, 52.2 (q, $J=29.2$ Hz); ${ }^{19}$ F NMR ( $471 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$-67.1; HRMS (ESI) m/z calculated for $\mathrm{C}_{24} \mathrm{H}_{14} \mathrm{BrF}_{3} \mathrm{NO}[\mathrm{M}-\mathrm{H}]^{-}$ 468.0216, found 468.0214; HPLC: the ee value was determined by HPLC analysis (Chiralpak AD-H, $i-\mathrm{PrOH} / \mathrm{hexane}=20 / 80,1.0 \mathrm{~mL} / \mathrm{min}, 215 \mathrm{~nm})$, retention time: $\mathrm{t}_{\text {minor }}=6.293 \mathrm{~min}, \mathrm{t}_{\text {major }}=8.167 \mathrm{~min}$, ee $=95.0 \% ;[\alpha]_{\mathrm{D}}{ }^{30}=-136.9(\mathrm{c}=1.01, \mathrm{THF})$.

(S)-4-(1,1,1-Trifluoro-2-(6-fluoro-1H-indol-3-yl)-4-phenylbut-3-yn-2-yl)phenol (7h)

It was purified by silica gel chromatography using EtOAc/petroleum ether (1:4). Yield: 75\% (30.7 $\mathrm{mg}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.18(\mathrm{brs}, 1 \mathrm{H}), 7.53-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.39-$ $7.37(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.07-7.04(\mathrm{~m}, 1 \mathrm{H}), 6.80-6.72(\mathrm{~m}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 160.3(\mathrm{~d}, J=238.9 \mathrm{~Hz}), 155.9,136.6(\mathrm{~d}, J=12.3 \mathrm{~Hz}), 132.1,130.7$, 128.9, 128.9, 128.5, 125.7 ( $\mathrm{q}, J=284.7 \mathrm{~Hz}$ ), $123.4(\mathrm{q}, ~ J=2.5 \mathrm{~Hz}), 122.5,122.3,122.1(\mathrm{~d}, J=10.1$ $\mathrm{Hz}), 115.2,112.9,109.1(\mathrm{~d}, J=24.4 \mathrm{~Hz}), 97.7(\mathrm{~d}, J=26.2 \mathrm{~Hz}), 86.7,86.1(\mathrm{q}, J=1.7 \mathrm{~Hz}), 51.2$ (q, $J$ $=29.7 \mathrm{~Hz}$ ); ${ }^{19} \mathrm{~F}$ NMR ( $471 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-70.8$, -120.5 ; HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{24} \mathrm{H}_{14} \mathrm{~F}_{4} \mathrm{NO}[\mathrm{M}-\mathrm{H}]^{-}$408.1017, found 408.1007; HPLC: the ee value was determined by HPLC analysis $($ Chiralpak IB, $i-\mathrm{PrOH} /$ hexane $=10 / 90,1.0 \mathrm{~mL} / \mathrm{min}, 218 \mathrm{~nm})$, retention time: $\mathrm{t}_{\text {minor }}=12.190$ $\min , \mathrm{t}_{\text {major }}=13.153 \mathrm{~min}, \mathrm{ee}=93.1 \% ;[\alpha]_{\mathrm{D}}{ }^{30}=-168.1\left(\mathrm{c}=1.05, \mathrm{CHCl}_{3}\right)$.

(S)-4-(1,1,1-Trifluoro-4-phenyl-2-(2-phenyl-1H-indol-3-yl)but-3-yn-2-yl)phenol (7i)

It was purified by silica gel chromatography using EtOAc/petroleum ether (1:4). Yield: 70\% (32.6 $\mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.07$ (brs, 1 H ), $7.54(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.36-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.17(\mathrm{~m}, 7 \mathrm{H}), 7.13-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.07-7.03(\mathrm{~m}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}$ ), 5.03 (brs, 1 H ); ${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 154.9, 138.7, 135.1, 133.9, 131.9, 131.6, $130.6,130.0,128.5,128.3,128.0,127.7,127.1,126.2(\mathrm{q}, J=284.5 \mathrm{~Hz}), 122.6,122.4,122.3(\mathrm{q}, J=$ $2.2 \mathrm{~Hz}), 120.3,115.1,110.8,109.2,87.8(\mathrm{q}, J=2.3 \mathrm{~Hz}), 87.6,51.6(\mathrm{q}, J=29.4 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR ( 471 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$-67.0; HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{30} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{NO}[\mathrm{M}-\mathrm{H}]^{-} 466.1424$, found 466.1431; HPLC: the ee value was determined by HPLC analysis (Chiralpak AD-H, $i-\mathrm{PrOH} / \mathrm{hexane}=$ $20 / 80,1.0 \mathrm{~mL} / \mathrm{min}, 237 \mathrm{~nm}$ ), retention time: $\mathrm{t}_{\text {major }}=6.660 \mathrm{~min}, \mathrm{t}_{\text {minor }}=7.757 \mathrm{~min}$, ee $=92.3 \% ;[\alpha]_{\mathrm{D}}{ }^{30}=$ $-16.2\left(\mathrm{c}=1.04, \mathrm{CHCl}_{3}\right)$.


1-Methyl-2-phenyl-5-(1,1,1-trifluoro-2-(4-methoxyphenyl)-4-phenylbut-3-yn-2-yl)-1H-pyrrole (9')

9 was prepared using $\mathbf{3 d}$ with 1.0 equiv of $\mathbf{8}$ without $\mathrm{K}_{2} \mathrm{CO}_{3}$ additive. The mixture was treated with NaH and MeI for purification due to the product instability issue. Yield: $65 \%(29.0 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.58-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.34(\mathrm{~m}, 7 \mathrm{H}), 7.33-7.29$ $(\mathrm{m}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.56-6.53(\mathrm{~m}, 1 \mathrm{H}), 6.28(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.28(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.1,136.9,133.4,132.1,130.4,129.5,129.1,128.6,128.5$, $127.9,127.3,127.2,125.1(\mathrm{q}, ~ J=284.1 \mathrm{~Hz}), 122.3,114.0,109.0(\mathrm{q}, J=2.9 \mathrm{~Hz}), 107.8,87.3,84.7$, $55.5,52.4(\mathrm{q}, J=28.9 \mathrm{~Hz}), 33.7 ;{ }^{19} \mathrm{~F} \operatorname{NMR}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-70.4 ; \mathrm{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 446.1726$, found 446.1739 ; HPLC: the ee value was determined by HPLC analysis (Chiralcel OD-H, $i-\mathrm{PrOH} / \mathrm{hexane}=0.5 / 99.5,1.0 \mathrm{~mL} / \mathrm{min}, 279 \mathrm{~nm}$ ), retention time: $\mathrm{t}_{\text {minor }}$ $=7.360 \mathrm{~min}, \mathrm{t}_{\text {major }}=8.460 \mathrm{~min}, \mathrm{ee}=93.1 \% ;[\alpha]_{\mathrm{D}}{ }^{30}=-13.3\left(\mathrm{c}=0.92, \mathrm{CHCl}_{3}\right)$.

(S)-4-(1-Chloro-1,1-difluoro-2-(1H-indol-3-yl)-4-phenylbut-3-yn-2-yl)phenol (11a)

It was purified by silica gel chromatography using EtOAc/petroleum ether (1:4). Yield: 63\% (25.8mg). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.16(\mathrm{brs}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.51-7.44(\mathrm{~m}$, $3 \mathrm{H}), 7.41-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.20-7.14(\mathrm{~m}, 1 \mathrm{H}), 7.02-6.96(\mathrm{~m}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.95$ (brs, 1 H$) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 155.7,136.4,132.0,131.2,130.9(\mathrm{t}, J=300.6 \mathrm{~Hz}), 129.7$, $128.8,128.5,126.0,123.4(\mathrm{t}, J=3.3 \mathrm{~Hz}), 122.7,122.6,121.4,120.0,115.0,113.2,111.3,87.4(\mathrm{t}, J=$ 3.1 Hz), 87.2, $56.7(\mathrm{t}, J=25.4 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR ( $471 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-54.50--56.79(\mathrm{~m}, 2 \mathrm{~F})$; HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{24} \mathrm{H}_{15} \mathrm{ClF}_{2} \mathrm{NO}[\mathrm{M}-\mathrm{H}]^{-} 406.0816$, found 406.0809 ; HPLC: the ee value was determined by HPLC analysis (Chiralpak IG, $i-\mathrm{PrOH} /$ hexane $=10 / 90,1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$ ), retention time: $\mathrm{t}_{\text {minor }}=6.623 \mathrm{~min}, \mathrm{t}_{\text {major }}=15.933 \mathrm{~min}, \mathrm{ee}=84.1 \% ;[\alpha]_{\mathrm{D}}{ }^{30}=-21.5\left(\mathrm{c}=1.04, \mathrm{CHCl}_{3}\right)$.

(S)-4-(4,4,5,5,5-Pentafluoro-3-(1 H-indol-3-yl)-1-phenylpent-1-yn-3-yl)phenol (11b)

It was purified by silica gel chromatography using EtOAc/petroleum ether (1:4). Yield: 68\% ( 32.1 mg ). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.13(\mathrm{brs}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.31(\mathrm{~m}$, $5 \mathrm{H}), 7.18-7.12(\mathrm{~m}, 1 \mathrm{H}), 7.00-6.94(\mathrm{~m}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.75(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H})$, 5.12 (brs, 1 H ), $3.80(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.1,155.7,136.5,133.4,130.8,128.7$, 125.9, 123.2 (t, $J=4.6 \mathrm{~Hz}$ ), 122.5, 121.5, 119.9, 124.1 - 112.7 (m), 115.1, 114.8, 114.1, 113.1, 111.3, 88.1, 84.4 - $84.2(\mathrm{~m}), 55.5,50.2-49.7(\mathrm{~m}) ;{ }^{19} \mathrm{~F}$ NMR ( $471 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-76.5-76.6(\mathrm{~m}, 3 \mathrm{~F})$, -110.0 - -115.7 (m, 2F); HRMS (ESI) m/z calculated for $\mathrm{C}_{26} \mathrm{H}_{17} \mathrm{~F}_{5} \mathrm{NO}_{2}[\mathrm{M}-\mathrm{H}]^{-} 470.1185$, found 470.1188; HPLC: the ee value was determined by HPLC analysis (Chiralpak IG, $i-\mathrm{PrOH} / \mathrm{hexane}=$ $10 / 90,1.0 \mathrm{~mL} / \mathrm{min}, 256 \mathrm{~nm}$ ), retention time: $\mathrm{t}_{\text {minor }}=7.460 \mathrm{~min}, \mathrm{t}_{\text {major }}=13.857 \mathrm{~min}, \mathrm{ee}=91.1 \% ;[\alpha]_{\mathrm{D}}{ }^{30}=$ $-88.3\left(\mathrm{c}=1.04, \mathrm{CHCl}_{3}\right)$.

(S)-4-(4,4,5,5,6,6,6-Heptafluoro-3-(1H-indol-3-yl)-1-(4-methoxyphenyl)hex-1-yn-3-yl)phenol (11c)

It was purified by silica gel chromatography using EtOAc/petroleum ether (1:4). Yield: 66\% (34.3 $\mathrm{mg}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.07(\mathrm{brs}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.40(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.14(\mathrm{~m}, 1 \mathrm{H}), 7.03-6.98(\mathrm{~m}$, $1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.74(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.21(\mathrm{brs}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.0,155.6,136.5,133.4,131.0,128.5,125.8,123.3,122.5,121.5,119.9,122.9-$ $107.5(\mathrm{~m}), 115.1,114.8,114.2,113.1,111.4,88.2,84.3-84.2(\mathrm{~m}), 55.5,50.9(\mathrm{t}, J=23.7 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR (471 MHz, CDCl ${ }_{3}$ ) $\delta-80.9$ - -81.0 (m, 3F), -106.2--109.8 (m, 2F), -117.8--121.3 (m, 2F); HRMS (ESI) m/z calculated for $\mathrm{C}_{27} \mathrm{H}_{17} \mathrm{~F}_{7} \mathrm{NO}_{2}[\mathrm{M}-\mathrm{H}]^{-} 520.1153$ found 520.1149; HPLC: the ee
value was determined by HPLC analysis (Chiralpak IG, $i$-PrOH/hexane $=10 / 90,1.0 \mathrm{~mL} / \mathrm{min}, 253 \mathrm{~nm}$ ), retention time: $\mathrm{t}_{\text {minor }}=5.647 \mathrm{~min}, \mathrm{t}_{\text {major }}=8.487 \mathrm{~min}$, ee $=93.0 \% ;[\alpha]_{\mathrm{D}}{ }^{30}=-56.6\left(\mathrm{c}=1.01, \mathrm{CHCl}_{3}\right)$.

## Absolute configuration determination

## Absolute configuration determination of 4a

The absolute configuration of $\mathbf{4 a}$ was determined by preparing the same product $\mathbf{B}$ from the reported optical pure substrate $(S)$ - $\mathbf{A}$ and $\mathbf{4 a}$ respectively. ${ }^{[5-6]}$


Regent and condition: (a) iodobenzene ( 1.1 equiv), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ ( 0.02 equiv), $\mathrm{CuI}\left(0.015 \mathrm{mml}, 0.05\right.$ equiv), THF/Et ${ }_{3} \mathrm{~N}$ $(1 \mathrm{~mL} / 1 \mathrm{~mL}), \mathrm{N}_{2}, 60^{\circ} \mathrm{C}, 12 \mathrm{~h}$.

## (R)-1-Methyl-3-(1,1,1-trifluoro-2-(4-methoxyphenyl)-4-phenylbut-3-yn-2-yl)-1H-indole (B)

Prepared starting from $(S)$-A according to procedure a. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.59(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.26-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 1 \mathrm{H})$, $6.99-6.95(\mathrm{~m}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 159.7,137.5,132.1,130.4,129.0,128.7,128.4,127.7(\mathrm{q}, J=2.6 \mathrm{~Hz}), 126.3,125.9(\mathrm{q}, J=$ $284.4 \mathrm{~Hz}), 122.8,122.1,121.4,119.6,113.6,110.9,109.5,86.5$ (q, $J=1.2 \mathrm{~Hz}), 86.4,55.4,51.2$ (q, $J$ $=29.1 \mathrm{~Hz}$ ), 33.2; ${ }^{19} \mathrm{~F}$ NMR ( $471 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-70.6$; HRMS (ESI) m/z calculated for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{NO}$ $[\mathrm{M}+\mathrm{H}]^{+}$420.1570, found 420.1566; HPLC: the ee value was determined by HPLC analysis $($ Chiralpak AD-H, i-PrOH/hexane $=2 / 98,1.0 \mathrm{~mL} / \mathrm{min}, 215 \mathrm{~nm})$, retention time: $\mathrm{t}_{\text {major }}=6.753 \mathrm{~min}$, $\mathrm{t}_{\text {minor }}=10.740 \mathrm{~min}$, ee $=88.8 \% ;[\alpha]_{\mathrm{D}}{ }^{30}=+98.3\left(\mathrm{c}=0.50, \mathrm{CHCl}_{3}\right)$.


Regent and condition: (b) MeI ( 5.0 equiv), NaH ( 2.5 equiv), THF.

Prepared starting from $\mathbf{4 a}$ according to procedure $\mathbf{b}$. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{19} \mathrm{~F}$ NMR were the same as the $(R)$-B above. HPLC: the ee value was determined by HPLC analysis (Chiralpak AD-H, $i-\mathrm{PrOH} /$ hexane $=2 / 98,1.0 \mathrm{~mL} / \mathrm{min}, 215 \mathrm{~nm})$, retention time: $\mathrm{t}_{\text {minor }}=6.353 \mathrm{~min}, \mathrm{t}_{\text {major }}=9.693 \mathrm{~min}$, ee $=$ $94.4 \% ;[\alpha]_{\mathrm{D}}{ }^{30}=-120.2\left(\mathrm{c}=0.22, \mathrm{CHCl}_{3}\right)$. The results of HPLC and $[\alpha]_{\mathrm{D}}$ were opposite to $(R)-\mathbf{B}$, which allowed the assignment of the absolute configuration of $\mathbf{4 a}$ as $S$ according to the known literature.


Integration Results

| No. | Peak Name | Retention Time <br> min | Area <br> $m A U * m i n$ | Relative Area <br> $\%$ | Amount <br> n.a. |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 1 |  | 6.783 | 472.765 | 50.48 | n.a. |
| 2 | 10.697 | 463.867 | 49.52 | n.a. |  |
| Total: |  | 936.632 | 100.00 |  |  |



| Integration Results |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| No. | Peak Name | Retention Time <br> min | Area <br> mAU*min | Relative Area | $\%$ | Amount | n.a. |
| :---: |
| 1 |


| Integration Results |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| No. | Peak Name | Retention Time <br> min | Area <br> mAU*min | Relative Area <br> $\%$ | Amount <br> n.a. |
| 1 | 6.353 | 4.201 | 2.82 | n.a. |  |
| 2 | 9.693 | 144.613 | 97.18 | n.a. |  |
| Total: |  | 148.814 | 100.00 |  |  |

## Absolute configuration determination of 6a

The absolute configuration of $\mathbf{6 a}$ was determined to be $S$ on the basis of UV and circular dichroism (CD) analyses. The simulated electrostatic circular dichroism (ECD) curve of (S)-6a and (R)-6a through DFT calculation were correspondingly expressed as the red curve $\mathbf{6} \mathbf{a}_{S}$ and the blue curve $\mathbf{6} \mathbf{a}_{R}$. The experiment ECD curve of $\mathbf{6 a}$ through handling the experimental data from UV and CD spectra was expressed as the black curve 6a. According to the figure shown below, the trend of the experiment ECD curve of $\mathbf{6 a}$ was consistent with the simulated ECD curve of $\mathbf{6 a}$, which allowed the assignment of the absolute configuration of $\mathbf{6 a}$ as $S$.



(S)-4-(2,2,2-trifluoro-1-(1H-indol-3-yl)-1-phenylethyl)phenol

## Computational methods:

The calculations were conducted using density functional theory (DFT) as implemented in the gaussian 09. ${ }^{[7]}$ Geometry optimization and frequency calculation were carried out at the B3LYP/6-31G* level. Electronic excitation energies and rotational strengths in methanol were calculated using TDDFT at cam-B3LYP/PCM-6-31+G(d,p) level in velocity formalism for the first 50 states. The CD curves were simulated by using the Gaussian function: ${ }^{[8]}$

$$
\Delta \varepsilon(E)=\frac{1}{2.296 \times 10^{-39}} \frac{1}{\sigma \sqrt{\pi}} \times \sum_{i} \Delta E_{i} R_{i} e^{-\left[\left(E-\Delta E_{i}\right) / \sigma\right]^{2}}
$$

where $\sigma$ is the width of the band at $1 / e$ height and $\Delta E i$ and $R i$ are the excitation energies and rotatory strengths for transition $i$, respectively. Here a value of $\sigma=0.6 \mathrm{eV}$.

## Synthetic application



## (R)-3-(1,1,1-Trifluoro-2,4-diphenylbutan-2-yl)-1H-indole (12)

To a solution of $\mathbf{4 a}\left(0.1 \mathrm{mmol}, 1.0\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ were added pyridine $(0.2 \mathrm{mmol}, 2.0$ equiv) and a solution of $\mathrm{Tf}_{2} \mathrm{O}\left(0.115 \mathrm{mmol}, 1.15\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ sequentially. The reaction mixture was stirred for 2 h . Then water $(10 \mathrm{~mL})$ was added. The layers were separated, and the aqueous layer was extracted with ethyl acetate ( $10 \mathrm{~mL} \times 3$ ). The combined organic layers were washed with brine ( 10 mL ), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The residue was purified by flash chromatography on silica gel using EtOAc/petroleum ether (1:10) as eluent. Then a mixture of the product, $10 \% \mathrm{Pd} / \mathrm{C}(9.3 \mathrm{mg}, 10 \mathrm{wt} \%), \mathrm{NH}_{4} \mathrm{OAc}(15.4 \mathrm{mg})$, and $\mathrm{Mg}(12.0 \mathrm{mg})$ in methanol $(5.0 \mathrm{~mL})$ was stirred at room temperature under hydrogen balloon for 12 h . The mixture was passed through a short length of silica gel using EtOAc/petroleum ether (1:10) as eluent to afford 12 ( $32.6 \mathrm{mg}, 86 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.15$ (brs, 1 H ), $7.44-7.41$ (m, 2H), 7.39 $7.35(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.03-7.01(\mathrm{~m}, 2 \mathrm{H})$, $6.91-6.87(\mathrm{~m}, 1 \mathrm{H}), 6.81-6.78(\mathrm{~m}, 1 \mathrm{H}), 2.88-2.76(\mathrm{~m}, 2 \mathrm{H}), 2.64-2.55(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.29(\mathrm{~m}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 142.4,139.1,136.6,129.3,128.6,128.6,128.3$ ( $\mathrm{q}, J=285.1$ Hz ), 128.2, 127.8, 126.1, 124.3 (q, $J=2.2 \mathrm{~Hz}$ ), 122.4, 121.6, 119.9, 114.0, 111.4, 53.8 (q, $J=24.5$ Hz ), 38.3, 31.8; ${ }^{19} \mathrm{~F}$ NMR ( $471 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$-68.1; HRMS (EI) m/z calculated for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{~N}[\mathrm{M}$ $+\mathrm{H}]^{+}: 380.1621$, found 380.1623 ; HPLC: the ee value was determined by HPLC analysis (Chiralpak $\mathrm{IG}, \mathrm{i}-\mathrm{PrOH} /$ hexane $=5 / 95,1 \mathrm{~mL} / \mathrm{min}, 215 \mathrm{~nm}$ ), retention time: $\mathrm{t}_{\text {major }}=9.737 \mathrm{~min}, \mathrm{t}_{\text {minor }}=11.590 \mathrm{~min}$, $\mathrm{ee}=93.4 \% ;[\alpha]_{\mathrm{D}}{ }^{30}=+8.5\left(\mathrm{c}=0.96, \mathrm{CHCl}_{3}\right)$.


## (S)-3-(2-([1,1'-Biphenyl]-4-yl)-1,1,1-trifluoro-4-phenylbut-3-yn-2-yl)-1 H-indole (13)

To a solution of $\mathbf{4 a}$ ( 0.1 mmol , 1.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ were added pyridine ( 0.2 mmol , 2.0 equiv) and a solution of $\mathrm{Tf}_{2} \mathrm{O}\left(0.115 \mathrm{mmol}, 1.15\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ sequentially. The reaction mixture was stirred for 2 h . Then water $(10 \mathrm{~mL})$ was added. The layers were separated, and the aqueous layer was extracted with ethyl acetate ( $10 \mathrm{~mL} \times 3$ ). The combined organic layers were washed with brine ( 10 mL ), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The residue was purified by flash chromatography on silica gel using EtOAc/petroleum ether (1:10) as eluent. Then to a solution of the product, phenylboronic acid ( $0.15 \mathrm{mmol}, 1.5$ equiv), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(97.7 \mathrm{mg}, 0.3$ mmol, 3 equiv) in dioxane ( 1 mL ) was added $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(17.3 \mathrm{mg}, 0.015 \mathrm{mmol}, 0.15$ equiv) and degassed with nitrogen. The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 48 h and then filtered through a short pad of celite, which was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The filtrate was concentrated and the residue was purified by flash chromatography on silica gel using EtOAc/petroleum ether (1:50) as eluent to afford $13\left(38.9 \mathrm{mg}, 86 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR ( $\left.500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.71(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, $7.61-7.56(\mathrm{~m}, 4 \mathrm{H}), 7.47-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.41-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.35-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.26(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.10-7.06(\mathrm{~m}, 1 \mathrm{H}), 6.88-6.84(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ) $\delta 142.5,141.6$, 138.3, 137.3, 132.7, 130.6, 129.9, 129.9, 129.6, 128.6, 128.1, 127.7, 127.1 (q, $J=283.3 \mathrm{~Hz}$ ), 126.7, $124.5(\mathrm{q}, J=2.3 \mathrm{~Hz}), 123.6,122.9,121.5,120.1,112.5,112.0,87.5,87.2(\mathrm{q}, J=1.8 \mathrm{~Hz}), 52.9(\mathrm{q}, J=$ 28.9 Hz ); ${ }^{19}$ F NMR ( $471 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ) $\delta-71.4$; HRMS (EI) m/z calculated for $\mathrm{C}_{30} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{~N}[\mathrm{M}-\mathrm{H}]$ : 450.1475, found 450.1483 ; HPLC: the ee value was determined by HPLC analysis (Chiralpak IG, i-PrOH/hexane $=5 / 95,1 \mathrm{~mL} / \mathrm{min}, 215 \mathrm{~nm}$ ), retention time: $\mathrm{t}_{\text {minor }}=8.923 \mathrm{~min}, \mathrm{t}_{\text {major }}=10.400 \mathrm{~min}$, ee $=$ $93.2 \% ;[\alpha]_{\mathrm{D}}{ }^{30}=-54.6\left(\mathrm{c}=0.99, \mathrm{CHCl}_{3}\right)$.

## Mechanistic studies



## 4-(1,1,1-Trifluoro-4-phenylbut-3-yn-2-ylidene)cyclohexa-2,5-dienone (14)

A solution of $1 \mathbf{1 a}$ ( $0.1 \mathrm{mmol}, 1.0$ equiv), $\mathrm{MnO}_{2}(0.5 \mathrm{mmol}, 5.0$ equiv) and DDQ ( $0.025 \mathrm{mmol}, 0.25$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ was stirred at $60{ }^{\circ} \mathrm{C}$ for 8 h . Then it was purified directly by silica gel chromatography using ethyl acetate/petroleum ether 1:9). Yield: $11 \%$ ( 2.9 mg ). ${ }^{1} \mathrm{H}$ NMR ( 500 MHz , $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.37(\mathrm{dd}, J=10.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.00-6.93(\mathrm{~m}$, $1 \mathrm{H}), 6.93-6.87(\mathrm{~m}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.23(\mathrm{dd}, J=10.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{dd}, J=10.2,1.9 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta 185.6,139.1,136.1,132.2,131.9(\mathrm{q}, J=2.7 \mathrm{~Hz}), 131.5,130.6,130.5$, 128.9, $121.9(\mathrm{q}, J=275.7 \mathrm{~Hz}), 121.5,121.4(\mathrm{q}, J=34.1 \mathrm{~Hz}), 110.1,84.4(\mathrm{q}, J=3.7 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR (471 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta$-55.8; HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$275.0678, found 275.0673.


## 1-Methoxy-4-(1,1,1-trifluoro-4-phenylbut-3-yn-2-yl)benzene (15)

To a solution of $\mathbf{1 5}^{\prime}\left(0.5 \mathrm{mmol}, 1.0\right.$ equiv) was added $\mathrm{Et} 3 \mathrm{SiH}\left(1.0 \mathrm{mmol}, 2.0\right.$ equiv) and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ ( $0.75 \mathrm{mmol}, 1.5$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ at $-40{ }^{\circ} \mathrm{C}$. Then it was warmed to room temperature. Upon starting material consumption monitored by TLC, the mixture was quenched by a saturated aqueous $\mathrm{NaHCO}_{3}$ solution. The organic layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic layers were washed with saturated aqueous NaCl solution, dried over anhydrous $\mathrm{MgSO}_{4}$, filtered and removed under vacuum. The residue was purified by a column chromatography on silica gel using petroleum ether as eluent to give the desired product 15 ( $68 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ $7.56-7.44(\mathrm{~m}, 4 \mathrm{H}), 7.40-7.32(\mathrm{~m}, 3 \mathrm{H}), 6.95(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.53(\mathrm{q}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 160.2,132.1,130.7,129.0,128.5,124.6(\mathrm{q}, J=280.4 \mathrm{~Hz}$ ), 124.1, 122.4, 114.3, 85.7, $82.1(\mathrm{q}, J=3.3 \mathrm{~Hz}), 55.5,43.5(\mathrm{q}, J=31.6 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR ( 471 MHz , $\mathrm{CDCl}_{3}$ ) $\delta$-70.8; HRMS (ESI) m/z calculated for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$291.0991, found 291.0987.

( S)-4-(1,1,1-Trifluoro-2-(1-methyl-1H-indol-3-yl)-4-phenylbut-3-yn-2-yl)phenol (20)
It was prepared according to the general procedure and purified by a column chromatography on silica gel using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Yield: $60 \%(24.4 \mathrm{mg}){ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.57(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.53-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.27(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.20(\mathrm{~m}$, $1 \mathrm{H}), 7.05-6.98(\mathrm{~m}, 1 \mathrm{H}), 7.04-6.99(\mathrm{~m}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.7,137.4,132.1,130.6,129.2,128.8,128.4,127.7(\mathrm{q}, J=2.4 \mathrm{~Hz}), 126.2,125.8$ ( $\mathrm{q}, ~ J=284.3 \mathrm{~Hz}$ ), 122.7, 122.2, 121.3, 119.6, 115.1, 110.8, 109.5, 86.4, 51.2 (q, $J=29.5 \mathrm{~Hz}), 33.1$;
${ }^{19} \mathrm{~F}$ NMR (471 MHz, $\mathrm{CDCl}_{3}$ ) $\delta-70.5$; HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{25} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{NO}[\mathrm{M}-\mathrm{H}]^{-}$ 404.1268, found 404.1275; HPLC: the ee value was determined by HPLC analysis (Chiralpak AD-H, i-PrOH/hexane $=20 / 80,1 \mathrm{~mL} / \mathrm{min}, 243 \mathrm{~nm}$ ), retention time: $\mathrm{t}_{\text {minor }}=4.707 \mathrm{~min}, \mathrm{t}_{\text {major }}=6.463 \mathrm{~min}$, ee $=$ 5.1\%.


## 4-(1,1,1-Trifluoro-2-hydroxy-4-phenylbut-3-yn-2-yl)phenol (21)

To a solution of alkyne ( $2 \mathrm{mmol}, 2.0$ equiv) in anhydrous THF at $-78{ }^{\circ} \mathrm{C}$ under $\mathrm{N}_{2}$ was added ${ }^{\mathrm{n}} \mathrm{BuLi}$ ( $2 \mathrm{mmol}, 0.8 \mathrm{~mL}, 2.5 \mathrm{M}$ in hexane, 2.0 equiv) dropwise. The reaction was stirred at the same temperature for 1 h . Then a solution of ketone ( $1 \mathrm{mmol}, 1.0$ equiv) in anhydrous THF ( 5 mL ) was added to the mixture dropwise. The reaction was kepted at $-78^{\circ} \mathrm{C}$ for 15 min and then warmed up to room temperature slowly overnight. Upon completion, the mixture was quenched by a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The organic layer was extracted with ethyl acetate and the combined organic layers were washed with saturated aqueous NaCl solution, dried over anhydrous $\mathrm{MgSO}_{4}$, filtered and removed under vacuum. The residue was purified by a column chromatography on silica gel using ethyl acetate/petroleum ether as eluent to give the desired product 21 ( $70 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.69(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), \underset{\mathrm{S} 40}{7.54-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.33(\mathrm{~m}, 3 \mathrm{H}), 6.88(\mathrm{~d}, J=}$
$8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.66(\mathrm{brs}, 1 \mathrm{H}), 3.50(\mathrm{brs}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 156.6,132.2,129.7$, 129.1, 128.7, 127.8, 123.6 (q, $J=285.5 \mathrm{~Hz}$ ), 121.1, 115.4, 88.3, 84.6, 73.4 (q, $J=32.6 \mathrm{~Hz}$ ); HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{O}_{2}[\mathrm{M}-\mathrm{H}]^{-}$291.0638, found 291.0645.

## References

1. Chen, M.; Sun, J. W. Angew. Chem. Int. Ed. 2017, 56, 11966.
2. Chen, D. D.; Chen, W. M.; Feng, S.; Gao, L.; Shen, H.; Tan, X. F.; Wang, L. PCT Int. Appl. 2017, 2017202798.
3. Kelly, C. B.; Mercadante, M. A.; Hamlin, T. A.; Fletcher, M. H.; Leadbeater, N. E. J. Org. Chem. 2012, 77, 8131.
4. Sumi, T.; Goseki, R.; Otsuka, H. Chem. Commun., 2017, 53, 11885.
5. Tsuchida, K.; Senda, Y.; Nakajima, K.; Nishibayashi, Y. Angew. Chem. Int. Ed. 2013, 52, 5146.
6. Sun, L.; Liu, P.; Wang, J.; Lu, P.; Wang, Y. G. J. Org. Chem. 2017, 82, 8407.
7. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian03, revision A.1; Gaussian, Inc.: Pittsburgh, PA, 2004.
8. Philip J. S.; Nobuyuki H. Chirality, 2010, 22, 229.

## NMR spectra

|  | $\cdots$ | ～ | ふুঁ্ |
| :---: | :---: | :---: | :---: |
|  | ¢ | $\checkmark$ | กNO\％ |
| へ－NへNへN | 0 | 4 | －Ja |



-156.2264
$\left[\begin{array}{l}132.0907 \\ 127.9585 \\ 125.7284 \\ 124.3960 \\ 123.4985 \\ 122.3791 \\ -121.2687 \\ -115.8195\end{array}\right.$
엉NNN ஸN N N N N



1a


|  |  |  |  |
| :---: | :---: | :---: | :---: |
|  |  |  |  |



|  | 1 | 1 | 1 | 1 | 1 | , | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 15 | -20 | -25 | -30 | -35 | -40 | -45 | -50 | -55 | -60 | -65 | -70 | -75 | -80 | -85 | -90 | -95 | -100 | -105 |









| N |  | mmonm | $\cdots \infty$ N |
| :---: | :---: | :---: | :---: |
| N |  | $\stackrel{\sim}{\circ} \stackrel{O}{\square}$ | 毋 ¢ |
| $\stackrel{\circ}{\sim}$ |  | ¢ ¢ ¢ ¢ | লু ָু |
| I |  | $\underbrace{\infty}$ | - |





1d





$1 e$ F










人

|  |  |  |  |  | $\begin{aligned} & \text { or } 1 \text { H } \\ & \text { O8 } \\ & \text { N } \end{aligned}$ |  | $\begin{array}{r} 58 \\ -0 \\ N \end{array}$ |  | $\begin{aligned} & T \\ & \infty \\ & \infty \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & \top \\ & \hline \\ & \hline \\ & \hline \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { í } \\ & \underset{\sim}{\sim} \\ & \hline \end{aligned}$ |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $1 \quad 1$ | $9.5$ | 9.0 | 8.5 | 8.0 | 7.5 | 7.0 | 6.5 | 6.0 | $\begin{aligned} & 5.5 \begin{array}{c} 1 \\ \text { fi } 5.0 \\ \text { (ppm) } \end{array} \end{aligned}$ | 4.5 | 4.0 | 3.5 | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 | $0.0$ |





1 g









$\stackrel{N}{N}$

$\qquad$























## 





| - | 1 | - | , | , | 1 | , | 1 | 1 | , | 1 | 1 |  |  | 1 |  | 1 | 1 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -25 | -30 | -35 | -40 | -45 | -50 | -55 | -60 | -65 | -70 | -75 | -80 | -85 | -90 | -95 | -100 | -105 | -110 | -115 |





$1 n$
n





1n




| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  |  | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -20 | -25 | -30 | -35 | -40 | -45 | $-50$ | -55 | -60 | -65 | ${ }^{-70}{ }_{\mathrm{fl}}$ | $\begin{array}{r} -75 \\ (\mathrm{ppm}) \end{array}$ | -80 | -85 | $-90$ | -95 | -100 | -105 | -110 | -115 | -120 | -125 |


| $\begin{aligned} & \underset{\infty}{\otimes} \\ & \stackrel{\text { ® }}{\sim} \end{aligned}$ |  | $\stackrel{\stackrel{\sim}{0}}{\underset{\sim}{\sim}}$ |  |
| :---: | :---: | :---: | :---: |




##  <br> 




|  |  |  |
| :---: | :---: | :---: |




$5 a$

##  <br>  <br> 


5b













|  | 10 |  | 1 | 1 | 1 | 1 | 13 |  | 110 |  | 1 | 1 |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 |  |  | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | -10 |



5e





| F | ¢ ${ }^{\text {m }}$ | ¢ ை \ll ¢ ¢ ¢ ¢ ¢ ¢ |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $\stackrel{\text { N }}{\text { N}}$ | \% | ু 寸 | $\hat{Q}_{0}^{\infty} \underset{\infty}{\infty} \underset{\sim}{N} \bar{\sim}$ | $\bar{\circ}$ |
| $\stackrel{\sim}{\sim}$ | ¢ ¢ |  |  | $\bigcirc$ |
| ¢ | - |  | 80 | - |


 M
$\underset{\sim}{6}$
$\stackrel{\circ}{\circ}$
1






##  <br> 





## 



10c
OMe

| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -20 | -30 | -40 | -50 | -60 | -70 | -80 | -90 | $-100$ | -110 | -120 | -130 | -140 | -150 | -160 | -170 |

$$
\begin{aligned}
& \text { ค }
\end{aligned}
$$









L. 1






| .5 | 11.0 | 10.5 | 10.0 | 9.5 | 9.0 | 8.5 | 8.0 | 7.5 | 7.0 | 6.5 | 6.0 | 5.5 | 5.0 | 4.5 | 4.0 | 3.5 | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 | 0.0 | -0.5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{fl}(\mathrm{ppm})$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |



| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | T |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | -10 |




4d


4d



4d










4f







4h



4h





| $\begin{aligned} & \bar{N} \\ & \stackrel{\sim}{6} \\ & \stackrel{\sim}{2} \end{aligned}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |


-8.2704
$\left[\begin{array}{r}7.4655 \\
7.3326 \\
7.3190\end{array}\right.$

| 7.3042 |
| :--- |
| 7.1871 |
| 7.1567 |
| 7.0015 |
| 6.9603 |

-5.5882







 $\left.\begin{array}{l}\text { L80カ' } 98 \\ \text { SSES' } 98 \\ 9 \nabla \nabla G^{\prime} 98\end{array}\right]$







41






















$6 a$



6a





$\sim$
$\sim$
$\sim$
$\sim$
$\sim$
$\sim$
$\sim$
$\sim$


6c


| O | N $\mathrm{N}_{\sim}^{\infty}$ |  |  |
| :---: | :---: | :---: | :---: |
| ¢ | NN |  |  |
| $\stackrel{\sim}{\sim}$ | $\stackrel{\sim}{\sim}$ |  | $\cdots{ }_{-}$ |
|  | $\square$ |  | 4 |








| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | -10 |



## 



$\underbrace{\text { NM M }}$

$6 e$


| 1 |
| :--- |
| 1 |
|  |
|  |

3
$\stackrel{3}{9}$


S110

| , | 1 | 1 | 1 | 1 | 1 | 1 |  | 1 | , | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -20 | -25 | -30 | -35 | -40 | -45 | -50 | -55 | -60 | -65 | -70 | -75 | -80 | -85 | -90 | -95 | -100 | -105 | -110 | -1 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |




 $\stackrel{\bar{m}}{\stackrel{\omega}{6}}$









7b


7b









 $\left.\right|^{1}$
















__-















| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | -10 |






[^0]









| $\begin{aligned} & \stackrel{\sim}{\circ} \mathrm{N} \\ & \stackrel{\circ}{\sim} \end{aligned}$ | Nָ둑 |  <br>  |
| :---: | :---: | :---: |
| $\infty \times$ | -NへNNe¢0 | NNNNNNNNNNNNNNNNN |




12





13



13


 $--71.4231$


13




14

|  |
| :---: |
|  |  |
|  |  |



15




20


| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  |  | 1 |  |  |  |  | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | -10 |



20


##  <br> 

## $\stackrel{8}{8}$ $\stackrel{0}{0}$ $i$ <br> | \% |
| :--- |
| $\stackrel{\circ}{0}$ |
| $\stackrel{1}{0}$ |






MeO



## HPLC spectra for ee determination



| Integration Results |  |  |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: |
| No. | Peak Name | Retention Time <br> min | Area <br> mAU*min | Relative Area <br> $\%$ | Amount <br> n.a. |
| 1 |  | 13.740 | 78.782 | 49.04 | n.a. |
| 2 | 16.177 | 81.864 | 50.96 | n.a. |  |
| Total: |  | 160.646 | 100.00 |  |  |



## Integration Results

| No. | Peak Name | Retention Time <br> $\min$ | Area <br> $m A U * m i n$ | Relative Area <br> $\%$ | Amount <br> n.a. |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 1 |  | 13.790 | 25.534 | 3.71 | n.a. |
| 2 |  | 16.100 | 662.918 | 96.29 | n.a. |
| Total: |  | $\mathbf{6 8 8 . 4 5 2}$ | $\mathbf{1 0 0 . 0 0}$ |  |  |



## Integration Results

| No. | Peak Name | Retention Time <br> min | Area <br> mAU*min | Relative Area <br> $\%$ | Amount <br> n.a. |
| :--- | :--- | :---: | :---: | :---: | :---: |
| 1 |  | 21.613 | 519.701 | 49.63 | n.a. |
| 2 | 27.903 | 527.413 | 50.37 | n.a. |  |
| Total: |  |  |  |  |  |



| Integration Results |  |  |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: |
| No. | Peak Name | Retention Time <br> min | Area <br> $\mathrm{mAU*}$ min | Relative Area <br> $\%$ | Amount <br> n.a. |
| 1 |  | 21.400 | 2.749 | 2.44 | n.a. |
| 2 | 27.653 | 109.940 | 97.56 | n.a. |  |
| Total: |  | 112.689 | 100.00 |  |  |



## Integration Results

| No. | Peak Name | Retention Time <br> min | Area <br> mAU*min | Relative Area <br> $\%$ | Amount <br> n.a. |
| :--- | :--- | :---: | :---: | :---: | :---: |
| 1 |  | 13.283 | 286.196 | 48.99 | n.a. |
| 2 | 15.310 | 298.009 | 51.01 | n.a. |  |
| Total: |  | $\mathbf{5 8 4 . 2 0 4}$ |  |  |  |



| Integration Results |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| No. | Peak Name | $\begin{array}{c}\text { Retention Time } \\ \text { min }\end{array}$ | $\begin{array}{c}\text { Area } \\ \text { mAU*min }\end{array}$ | Relative Area | Amount |
| n.a. |  |  |  |  |  |$]$| n.a. |
| :---: |
| 1 |



## Integration Results

| No. | Peak Name | Retention Time <br> min | Area <br> mAU*min | Relative Area <br> $\%$ | Amount <br> n.a. |
| :--- | :--- | :---: | :---: | :---: | :---: |
| 1 |  | 12.580 | 278.634 | 49.94 | n.a. |
| 2 | 15.577 | 279.358 | 50.06 | n.a. |  |
| Total: |  | $\mathbf{5 5 7 . 9 9 3}$ |  |  |  |



| Integration Results |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| No. | Peak Name | Retention Time <br> min | Area <br> mAU*min | Relative Area <br> $\%$ | Amount <br> n.a. |
| 1 |  | 12.620 | 5.829 | 4.39 | n.a. |
| 2 | 15.593 | 127.027 | 95.61 | n.a. |  |
| Total: | $\mathbf{1 3 2 . 8 5 6}$ |  |  |  |  |



## Integration Results

| No. | Peak Name | Retention Time <br> min | Area <br> mAU*min | Relative Area <br> $\%$ | Amount <br> n.a. |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 1 |  | 13.263 | 98.168 | 49.43 | n.a. |
| 2 | 16.123 | 100.422 | 50.57 | n.a. |  |
| Total: |  | 198.589 | $\mathbf{1 0 0 . 0 0}$ |  |  |



| Integration Results |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| No. | Peak Name | $\begin{array}{c}\text { Retention Time } \\ \text { min }\end{array}$ | $\begin{array}{c}\text { Area } \\ \text { mAU*min }\end{array}$ | Relative Area |  |
| $\%$ |  |  |  |  |  | \(\left.\begin{array}{c}Amount <br>


n.a.\end{array}\right]\)| n.a. |
| :--- |
| 1 |



## Integration Results

| No. | Peak Name | Retention Time <br> min | Area <br> mAU*min | Relative Area <br> $\%$ | Amount <br> n.a. |
| :--- | :--- | :---: | :---: | :---: | :---: |
| 1 |  | 16.670 | 1901.324 | 48.13 | n.a. |
| 2 | 19.263 | 2049.436 | 51.87 | n.a. |  |
| Total: |  | $\mathbf{3 9 5 0 . 7 6 0}$ | $\mathbf{1 0 0 . 0 0}$ |  |  |



| Integration Results |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| No. | Peak Name | Retention Time <br> min | Area <br> mAU*min | Relative Area <br> $\%$ | Amount <br> n.a. |
| 1 |  | 16.943 | 133.471 | 3.85 | n.a. |
| 2 | 19.467 | 3329.168 | 96.15 | n.a. |  |
| Total: |  | $\mathbf{3 4 6 2 . 6 3 9}$ | $\mathbf{1 0 0 . 0 0}$ |  |  |



## Integration Results

| No. | Peak Name | Retention Time <br> min | Area <br> mAU*min | Relative Area <br> $\%$ | Amount <br> n.a. |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 1 |  | 19.667 | 27.908 | 49.39 | n.a. |
| 2 | 22.213 | 28.595 | 50.61 | n.a. |  |
| Total: |  | $\mathbf{5 6 . 5 0 3}$ |  |  |  |



| Integration Results |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| No. | Peak Name | Retention Time <br> min | Area <br> mAU*min | Relative Area | Amount |
|  |  | 23.080 | 2.958 | 1.90 | n.a. |
| 1 |  | 26.093 | 153.050 | 98.10 | n.a. |
| 2 |  | 156.008 | $\mathbf{1 0 0 . 0 0}$ |  |  |
| Total: |  |  |  |  |  |



## Integration Results

| No. | Peak Name | Retention Time <br> min | Area <br> mAU*min | Relative Area <br> $\%$ | Amount <br> n.a. |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 1 |  | 10.300 | 717.035 | 49.76 | n.a. |
| 2 | 12.580 | 723.885 | 50.24 | n.a. |  |
| Total: |  | $\mathbf{1 4 4 0 . 9 2 0}$ | $\mathbf{1 0 0 . 0 0}$ |  |  |



| Integration Results |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| No. | Peak Name | Retention Time <br> min | Area <br> mAU*min | Relative Area <br> $\%$ | Amount <br> n.a. |
| 1 |  | 10.457 | 9.626 | 3.97 | n.a. |
| 2 | 12.797 | 233.079 | 96.03 | n.a. |  |
| Total: | $\mathbf{2 4 2 . 7 0 5}$ |  |  |  |  |



## Integration Results

| No. | Peak Name | Retention Time <br> min | Area <br> mAU*min | Relative Area <br> $\%$ | Amount <br> n.a. |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 1 |  | 20.737 | 348.887 | 49.03 | n.a. |
| 2 | 23.503 | 362.676 | 50.97 | n.a. |  |
| Total: |  | $\mathbf{7 1 1 . 5 6 3}$ |  |  |  |



| Integration Results |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| No. | Peak Name | Retention Time <br> min | Area <br> mAU*min | Relative Area <br> $\%$ | Amount |
| n.a. |  |  |  |  |  |
| 1 |  | 20.300 | 1.791 | 1.91 | n.a. |
| 2 | 22.877 | 92.179 | 98.09 | n.a. |  |
| Total: |  | 93.969 | 100.00 |  |  |



## Integration Results

| No. | Peak Name | Retention Time <br> min | Area <br> mAU*min | Relative Area <br> $\%$ | Amount <br> n.a. |
| :--- | :--- | :---: | :---: | :---: | :---: |
| 1 |  | 7.323 | 377.472 | 49.78 | n.a. |
| 2 | 10.333 | 380.820 | 50.22 | n.a. |  |
| Total: | $\mathbf{7 5 8 . 2 9 2}$ |  |  |  |  |



| Integration Results |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| No. | Peak Name | Retention Time <br> min | Area <br> mAU*min | Relative Area <br> $\%$ | Amount <br> n.a. |
| 1 | 7.267 | 25.886 | 8.48 | n.a. |  |
| 2 | 10.190 | 279.245 | 91.52 | n.a. |  |
| Total: |  | $\mathbf{3 0 5 . 1 3 1}$ |  |  |  |



## Integration Results

| No. | Peak Name | Retention Time <br> min | Area <br> mAU*min | Relative Area <br> $\%$ | Amount <br> n.a. |
| :--- | :--- | :---: | :---: | :---: | :---: |
| 1 |  | 10.733 | 964.219 | 49.75 | n.a. |
| 2 | 16.003 | 973.902 | 50.25 | n.a. |  |
| Total: |  | 1938.121 | $\mathbf{1 0 0 . 0 0}$ |  |  |



| Integration Results |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| No. | Peak Name | Retention Time <br> min | Area <br> mAU*min | Relative Area | Amount |
|  |  | 10.850 | 19.031 | 4.76 | n.a. |
| 1 |  | 16.043 | 380.653 | 95.24 | n.a. |
| 2 |  | 399.684 | $\mathbf{1 0 0 . 0 0}$ |  |  |
| Total: |  |  |  |  |  |



## Integration Results

| No. | Peak Name | Retention Time <br> min | Area <br> mAU*min | Relative Area <br> $\%$ | Amount <br> n.a. |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 1 |  | 7.533 | 529.244 | 49.84 | n.a. |
| 2 | 8.217 | 532.691 | 50.16 | n.a. |  |
| Total: |  | 1061.935 | 100.00 |  |  |



| Integration Results |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| No. | Peak Name | Retention Time <br> min | Area <br> mAU*min | Relative Area <br> $\%$ | Amount <br> n.a. |  |
| 1 | 7.550 | 138.246 | 96.35 | n.a. |  |  |
| 2 | 8.260 | 5.232 | 3.65 | n.a. |  |  |
| Total: | 143.478 | $\mathbf{1 0 0 . 0 0}$ |  |  |  |  |



## Integration Results

| No. | Peak Name | Retention Time <br> min | Area <br> mAU*min | Relative Area <br> $\%$ | Amount <br> n.a. |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 1 |  | 11.790 | 936.221 | 49.93 | n.a. |
| 2 | 13.400 | 938.747 | 50.07 | n.a. |  |
| Total: |  |  |  |  |  |



| Integration Results |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| No. | Peak Name | Retention Time <br> min | Area <br> mAU*min | Relative Area <br> $\%$ | Amount <br> n.a. |  |
| 1 |  | 11.460 | 574.595 | 95.62 | n.a. |  |
| 2 | 13.030 | 26.346 | 4.38 | n.a. |  |  |
| Total: | $\mathbf{6 0 0 . 9 4 1}$ |  |  |  |  |  |



## Integration Results

| No. | Peak Name | Retention Time <br> min | Area <br> mAU*min | Relative Area <br> $\%$ | Amount <br> n.a. |
| :--- | :--- | :---: | :---: | :---: | :---: |
| 1 |  | 7.700 | 365.330 | 50.02 | n.a. |
| 2 | 9.327 | 365.062 | 49.98 | n.a. |  |
| Total: | $\mathbf{7 3 0 . 3 9 2}$ | $\mathbf{1 0 0 . 0 0}$ |  |  |  |



| Integration Results |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| No. | Peak Name | $\begin{array}{c}\text { Retention Time } \\ \text { min }\end{array}$ | $\begin{array}{c}\text { Area } \\ \text { mAU*min }\end{array}$ | Relative Area |  |
| $\%$ |  |  |  |  |  | \(\left.\begin{array}{c}Amount <br>


n.a.\end{array}\right]\)| n.a. |
| :--- |
| 1 |



## Integration Results

| No. | Peak Name | Retention Time <br> min | Area <br> mAU*min | Relative Area <br> $\%$ | Amount <br> n.a. |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 1 |  | 15.730 | 1396.735 | 49.81 | n.a. |
| 2 | 19.807 | 1407.295 | 50.19 | n.a. |  |
| Total: | $\mathbf{2 8 0 4 . 0 3 0}$ | $\mathbf{1 0 0 . 0 0}$ |  |  |  |



| No. | Peak Name | Retention Time <br> $\min$ | Area <br> $m A U * m i n$ | Relative Area <br> $\%$ | Amount <br> n.a. |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 1 |  | 15.707 | 500.964 | 93.11 | n.a. |
| 2 | 19.847 | 37.084 | 6.89 | n.a. |  |
| Total: |  |  |  |  |  |



## Integration Results

| No. | Peak Name | Retention Time min | Area mAU**in | Relative Area \% | Amount n.a. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  | 12.657 | 244.239 | 49.94 | n.a. |
| 2 |  | 14.100 | 244.830 | 50.06 | n.a. |
| Total: 489.069 |  |  |  |  |  |



## Integration Results

| No. | Peak Name | Retention Time <br> min | Area <br> $m A A^{*} m i n$ | Relative Area <br> $\%$ | Amount <br> n.a. |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 1 |  | 12.580 | 355.461 | 96.57 | n.a. |
| 2 | 14.453 | 12.629 | 3.43 | n.a. |  |
| Total: |  | $\mathbf{3 6 8 . 0 9 1}$ | $\mathbf{1 0 0 . 0 0}$ |  |  |



## Integration Results

| No. | Peak Name | Retention Time <br> min | Area <br> mAU*min | Relative Area <br> $\%$ | Amount <br> n.a. |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 1 |  | 20.460 | 421.820 | 49.43 | n.a. |
| 2 | 24.230 | 431.583 | 50.57 | n.a. |  |
| Total: |  | 853.403 | $\mathbf{1 0 0 . 0 0}$ |  |  |



| Integration Results |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| No. | Peak Name | Retention Time <br> min | Area <br> mAU*min | Relative Area | Amount |
| 1 | 20.460 | 63.696 | 96.59 | n.a. |  |
| 2 | 24.720 | 2.247 | 3.41 | n.a. |  |
| Total: | 65.943 | $\mathbf{1 0 0 . 0 0}$ |  |  |  |



## Integration Results

| No. | Peak Name | Retention Time <br> min | Area <br> mAU*min | Relative Area <br> $\%$ | Amount <br> n.a. |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 1 |  | 9.973 | 811.399 | 49.57 | n.a. |
| 2 | 11.657 | 825.485 | 50.43 | n.a. |  |
| Total: |  |  |  |  |  |



| Integration Results |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| No. | Peak Name | Retention Time <br> min | Height <br> mAU | Relative Area <br> $\%$ | Amount <br> n.a. |
| 1 |  | 8.960 | 1748.946 | 95.59 | n.a. |
| 2 | 10.687 | 86.571 | 4.41 | n.a. |  |
| Total: |  | 1835.517 |  |  |  |



## Integration Results

| No. | Peak Name | Retention Time <br> min | Area <br> $m A U * m i n$ | Relative Area <br> $\%$ | Amount <br> n.a. |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 1 |  | 36.757 | 3557.996 | 49.40 | n.a. |
| 2 |  | 39.157 | 3644.874 | 50.60 | n.a. |
| Total: |  | $\mathbf{7 2 0 2 . 8 7 0}$ | $\mathbf{1 0 0 . 0 0}$ |  |  |



| Integration Results |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| No. | Peak Name | Retention Time <br> min | Area <br> mAU*min | Relative Area <br> $\%$ | Amount <br> n.a. |
| 1 |  | 36.220 | 3268.815 | 95.14 | n.a. |
| 2 | 38.910 | 166.839 | 4.86 | n.a. |  |
| Total: |  |  |  |  |  |



## Integration Results

| No. | Peak Name | Retention Time <br> min | Area <br> $m A U^{*} \min$ | Relative Area <br> $\%$ | Amount <br> n.a. |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 1 |  | 10.977 | 164.824 | 48.79 | n.a. |
| 2 | 12.277 | 172.996 | 51.21 | n.a. |  |
| Total: |  | $\mathbf{3 3 7 . 8 2 0}$ | $\mathbf{1 0 0 . 0 0}$ |  |  |



| Integration Results |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| No. | Peak Name | Retention Time <br> min | Area <br> mAU *in | Relative Area <br> $\%$ | Amount <br> n.a. |
| 1 |  | 10.847 | 419.180 | 95.50 | n.a. |
| 2 | 12.213 | 19.764 | 4.50 | n.a. |  |
| Total: |  | $\mathbf{4 3 8 . 9 4 4}$ | $\mathbf{1 0 0 . 0 0}$ |  |  |



## Integration Results

| No. | Peak Name | Retention Time <br> min | Area <br> $m A U * m i n$ | Relative Area <br> $\%$ | Amount <br> n.a. |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 1 |  | 11.907 | 915.139 | 49.93 | n.a. |
| 2 |  | 13.640 | 917.875 | 50.07 | n.a. |
| Total: |  | $\mathbf{1 8 3 3 . 0 1 4}$ | $\mathbf{1 0 0 . 0 0}$ |  |  |



| Integration Results |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| No. | Peak Name | Retention Time <br> min | Area <br> mAU*min | Relative Area <br> $\%$ | Amount <br> n.a. |
| 1 | 11.793 | 578.687 | 95.48 | n.a. |  |
| 2 | 13.543 | 27.396 | 4.52 | n.a. |  |
| Total: | 606.083 | $\mathbf{1 0 0 . 0 0}$ |  |  |  |



## Integration Results

| No. | Peak Name | Retention Time <br> min | Area <br> mAU*min | Relative Area <br> $\%$ | Amount <br> n.a. |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 1 |  | 13.273 | 76.886 | 49.62 | n.a. |
| 2 | 14.363 | 78.078 | 50.38 | n.a. |  |
| Total: |  | $\mathbf{1 5 4 . 9 6 5}$ |  |  |  |



| Integration Results |  |  |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: |
| No. | Peak Name | Retention Time <br> min | Area <br> mAU*min | Relative Area <br> $\%$ | Amount <br> n.a. |
| 1 |  | 13.397 | 401.569 | 98.24 | n.a. |
| 2 | 14.537 | 7.192 | 1.76 | n.a. |  |
| Total: | 408.761 | 100.00 |  |  |  |



## Integration Results

| No. | Peak Name | Retention Time min | Area mAU*min | Relative Area $\%$ | Amount n.a. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  | 7.867 | 424.934 | 49.75 | n.a. |
| 2 |  | 9.620 | 429.137 | 50.25 | n.a. |
| Total: |  |  | 854.071 | 100.00 |  |



| Integration Results |  |  |  |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| No. | Peak Name | Retention Time <br> min | Area <br> $\mathrm{mAU*}$ min | Relative Area <br> $\%$ | Amount <br> n.a. |  |
| 1 |  | 8.703 | 1.948 | 2.33 | n.a. |  |
| 2 | 10.577 | 81.678 | 97.67 | n.a. |  |  |
| Total: | 83.626 | 100.00 |  |  |  |  |



## Integration Results

| No. | Peak Name | Retention Time <br> min | Area <br> mAU*min | Relative Area <br> $\%$ | Amount <br> n.a. |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 1 |  | 25.693 | 113.412 | 49.31 | n.a. |
| 2 | 27.683 | 116.578 | 50.69 | n.a. |  |
| Total: |  | $\mathbf{2 2 9 . 9 9 0}$ |  |  |  |



| Integration Results |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| No. | Peak Name | Retention Time <br> min | Area <br> mAU*min | Relative Area <br> $\%$ | Amount <br> n.a. |  |
| 1 |  | 25.420 | 1.237 | 4.88 | n.a. |  |
| 2 | 27.323 | 24.090 | 95.12 | n.a. |  |  |
| Total: |  |  |  |  |  |  |



Integration Results

| No. | Peak Name | Retention Time <br> min | Area <br> mAU*min | Relative Area <br> $\%$ | Amount <br> n.a. |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 1 |  | 5.520 | 324.727 | 49.80 | n.a. |
| 2 |  | 8.687 | 327.276 | 50.20 | n.a. |
| Total: |  | $\mathbf{6 5 2 . 0 0 3}$ | $\mathbf{1 0 0 . 0 0}$ |  |  |

(manually integrated]

| Integration Results |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| No. | Peak Name | Retention Time <br> min | Area <br> mAU*min | Relative Area <br> $\%$ | Amount <br> n.a. |
| 1 | 5.477 | 34.035 | 97.56 | n.a. |  |
| 2 | 8.657 | 0.850 | 2.44 | n.a. |  |
| Total: | 34.885 | 100.00 |  |  |  |



## Integration Results

| No. | Peak Name | Retention Time <br> min | Area <br> $m A U^{*} m i n$ | Relative Area <br> $\%$ | Amount <br> n.a. |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 1 |  | 5.813 | 458.454 | 49.99 | n.a. |
| 2 | 7.003 | 458.582 | 50.01 | n.a. |  |
| Total: |  | $\mathbf{9 1 7 . 0 3 6}$ | $\mathbf{1 0 0 . 0 0}$ |  |  |



| Integration Results |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| No. | Peak Name | Retention Time <br> min | Area <br> mAU*min | Relative Area <br> $\%$ | Amount <br> n.a. |  |
| 1 |  | 5.623 | 157.889 | 97.68 | n.a. |  |
| 2 | 6.840 | 3.752 | 2.32 | n.a. |  |  |
| Total: | 161.641 | 100.00 |  |  |  |  |



| Integration Results |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| No. | Peak Name | Retention Time <br> min | Area <br> mAU*min | Relative Area <br> $\%$ | Amount <br> n.a. |
| 1 | 4.800 | 185.441 | 96.40 | n.a. |  |
| 2 | 5.500 | 6.921 | 3.60 | n.a. |  |
| Total: | 192.362 | 100.00 |  |  |  |



## Integration Results

| No. | Peak Name | Retention Time <br> min | Area <br> mAU*min | Relative Area <br> $\%$ | Amount <br> n.a. |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 1 |  | 8.610 | 451.942 | 49.59 | n.a. |
| 2 |  | 12.317 | 459.405 | 50.41 | n.a. |
| Total: |  | $\mathbf{9 1 1 . 3 4 7}$ | $\mathbf{1 0 0 . 0 0}$ |  |  |



| Integration Results |  |  |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: |
| No. | Peak Name | Retention Time <br> min | Area <br> mAU*min | Relative Area <br> $\%$ | Amount <br> n.a. |
| 1 |  | 8.347 | 8.559 | 2.09 | n.a. |
| 2 | 11.900 | 400.564 | 97.91 | n.a. |  |
| Total: | 409.123 |  |  |  |  |



| Integration Results |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| No. | Peak Name | Retention Time <br> min | Area <br> mAU*min | Relative Area <br> $\%$ | Amount <br> n.a. |
| 1 | 6.303 | 1027.966 | 49.62 | n.a. |  |
| 2 | 8.170 | 1043.722 | 50.38 | n.a. |  |
| Total: | $\mathbf{2 0 7 1 . 6 8 7}$ | $\mathbf{1 0 0 . 0 0}$ |  |  |  |


| Integration Results |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| No. | Peak Name | Retention Time <br> min | Area <br> mAU*min | Relative Area <br> $\%$ | Amount <br> n.a. |  |
| 1 |  | 6.293 | 5.082 | 2.50 | n.a. |  |
| 2 | 8.167 | 197.806 | 97.50 | n.a. |  |  |
| Total: | $\mathbf{2 0 2 . 8 8 8}$ |  |  |  |  |  |



## Integration Results

| No. | Peak Name | Retention Time <br> min | Area <br> mAU*min | Relative Area <br> $\%$ | Amount <br> n.a. |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 1 |  | 12.287 | 405.362 | 49.26 | n.a. |
| 2 | 13.317 | 417.541 | 50.74 | n.a. |  |
| Total: | $\mathbf{8 2 2 . 9 0 3}$ |  |  |  |  |



| Integration Results |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| No. | Peak Name | Retention Time <br> min | Area <br> mAU*min | Relative Area <br> $\%$ | Amount |
| n.a. |  |  |  |  |  |
| 1 |  | 12.190 | 2.681 | 3.45 | n.a. |
| 2 | 13.153 | 75.079 | 96.55 | n.a. |  |
| Total: |  | $\mathbf{7 7 . 7 6 0}$ | $\mathbf{1 0 0 . 0 0}$ |  |  |



## Integration Results

| No. | Peak Name | Retention Time <br> min | Area <br> $m A U^{*} \min$ | Relative Area <br> $\%$ | Amount <br> n.a. |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 1 |  | 6.670 | 359.581 | 49.84 | n.a. |
| 2 |  | 7.737 | 361.928 | 50.16 | n.a. |
| Total: |  | $\mathbf{7 2 1 . 5 0 9}$ | $\mathbf{1 0 0 . 0 0}$ |  |  |



| Integration Results |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| No. | Peak Name | Retention Time <br> min | Area <br> $m A U^{*} m i n$ | Relative Area <br> $\%$ | Amount <br> n.a. |
| 1 |  | 6.660 | 66.229 | 96.16 | n.a. |
| 2 | 7.757 | 2.644 | 3.84 | n.a. |  |
| Total: | 68.872 | $\mathbf{1 0 0 . 0 0}$ |  |  |  |



## Integration Results

| No. | Peak Name | Retention Time <br> min | Area <br> $m A U * m i n$ | Relative Area <br> $\%$ | Amount <br> n.a. |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 1 |  | 6.927 | 366.917 | 47.48 | n.a. |
| 2 |  | 8.233 | 405.908 | 52.52 | n.a. |
| Total: |  | $\mathbf{7 7 2 . 8 2 5}$ | $\mathbf{1 0 0 . 0 0}$ |  |  |



| Integration Results |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| No. | Peak Name | Retention Time <br> min | Area <br> mAU*min | Relative Area <br> $\%$ | Amount <br> n.a. |
| 1 | 7.360 | 7.121 | 3.46 | n.a. |  |
| 2 | 8.460 | 198.494 | 96.54 | n.a. |  |
| Total: | $\mathbf{2 0 5 . 6 1 6}$ | $\mathbf{1 0 0 . 0 0}$ |  |  |  |



## Integration Results

| No. | Peak Name | Retention Time <br> $\min$ | Area <br> mAU*min | Relative Area <br> $\%$ | Amount <br> n.a. |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 1 |  | 6.537 | 1128.852 | 49.58 | n.a. |
| 2 | 15.713 | 1148.016 | 50.42 | n.a. |  |
| Total: | $\mathbf{2 2 7 6 . 8 6 8}$ | $\mathbf{1 0 0 . 0 0}$ |  |  |  |



| Integration Results |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| No. | Peak Name | Retention Time min | Area mAU*min | Relative Area \% | Amount n.a. |
| 1 |  | 6.623 | 63.351 | 7.93 | n.a. |
| 2 |  | 15.933 | 735.133 | 92.07 | n.a. |
| Total: |  |  | 798.484 | 100.00 |  |



## Integration Results

| No. | Peak Name | Retention Time <br> min | Area <br> mAU*min | Relative Area <br> $\%$ | Amount <br> n.a. |
| :--- | :--- | :---: | :---: | :---: | :---: |
| 1 |  | 7.397 | 780.637 | 49.99 | n.a. |
| 2 |  | 13.913 | 780.893 | 50.01 | n.a. |
| Total: |  |  |  |  |  |



| Integration Results |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| No. | Peak Name | Retention Time <br> min | Area <br> mAU*min | Relative Area | Amount |
|  |  | 7.460 | 16.358 | 4.44 | n.a. |
| 1 |  | 13.857 | 352.246 | 95.56 | n.a. |
| 2 |  | 368.604 | 100.00 |  |  |
| Total: |  |  |  |  |  |



## Integration Results

| No. | Peak Name | Retention Time <br> min | Area <br> mAU*min | Relative Area <br> $\%$ | Amount <br> n.a. |
| :--- | :--- | :---: | :---: | :---: | :---: |
| 1 |  | 5.603 | 525.001 | 50.11 | n.a. |
| 2 | 8.480 | 522.746 | 49.89 | n.a. |  |
| Total: |  |  |  |  |  |



| Integration Results |  |  |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: |
| No. | Peak Name | Retention Time <br> min | Area <br> mAU*min | Relative Area <br> $\%$ | Amount <br> n.a. |
| 1 |  | 5.647 | 24.501 | 3.50 | n.a. |
| 2 | 8.487 | 676.027 | 96.50 | n.a. |  |
| Total: | $\mathbf{7 0 0 . 5 2 8}$ |  |  |  |  |



Integration Results

| No. | Peak Name | Retention Time <br> min | Area <br> $m A U^{*} m i n$ | Relative Area <br> $\%$ | Amount <br> n.a. |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 1 |  | 9.997 | 930.889 | 49.24 | n.a. |
| 2 |  | 11.873 | 959.503 | 50.76 | n.a. |
| Total: |  | $\mathbf{1 8 9 0 . 3 9 2}$ | $\mathbf{1 0 0 . 0 0}$ |  |  |



| Integration Results |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| No. | Peak Name | Retention Time <br> min | Area <br> mAU*min | Relative Area | Amount |
|  |  | 9.737 | 633.937 | 96.68 | n.a. |
| 1 |  | 11.590 | 21.793 | 3.32 | n.a. |
| 2 |  | 655.730 | 100.00 |  |  |
| Total: |  |  |  |  |  |



## Integration Results

| No. | Peak Name | Retention Time <br> min | Area <br> mAU | Relative Area <br> $\%$ | Amount <br> n.a. |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 1 |  | 8.870 | 563.779 | 49.94 | n.a. |
| 2 |  | 10.333 | 565.087 | 50.06 | n.a. |
| Total: |  | $\mathbf{1 1 2 8 . 8 6 7}$ | $\mathbf{1 0 0 . 0 0}$ |  |  |



| Integration Results |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| No. | Peak Name | Retention Time <br> min | Area <br> mAU*min | Relative Area <br> $\%$ | Amount <br> n.a. |
| 1 |  | 8.923 | 19.510 | 3.42 | n.a. |
| 2 | 10.400 | 551.122 | 96.58 | n.a. |  |
| Total: |  | $\mathbf{5 7 0 . 6 3 2}$ |  |  |  |



Integration Results

| No. | Peak Name | Retention Time <br> min | Area <br> $m A U * m i n$ | Relative Area <br> $\%$ | Amount <br> n.a. |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 1 |  | 4.757 | 519.650 | 49.98 | n.a. |
| 2 | 6.527 | 520.012 | 50.02 | n.a. |  |
| Total: |  | $\mathbf{1 0 3 9 . 6 6 3}$ | $\mathbf{1 0 0 . 0 0}$ |  |  |



| Integration Results |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| No. | Peak Name | Retention Time <br> min | Area <br> mAU*min | Relative Area <br> $\%$ | Amount <br> n.a. |  |
| 1 |  | 4.707 | 166.529 | 47.45 | n.a. |  |
| 2 | 6.463 | 184.445 | 52.55 | n.a. |  |  |
| Total: | $\mathbf{3 5 0 . 9 7 4}$ | $\mathbf{1 0 0 . 0 0}$ |  |  |  |  |


[^0]:    
    芯

