Electronic Supplementary Information (ESI) for

Responsive morphology transition from micelles to vesicles based on dynamic covalent surfactant

Pengxiang Wang,^{a,b,c} Tongyu Zhu,^{a,b} Xiaoyu Hou,^{a,b} Yilu Zhao,^{a,b} Xiangfeng Zhang,^{a,b}

Hongbin Yang,^{*,a,b} and Wanli Kang^{*,a,b}

^a Shandong Key Laboratory of Oilfield Chemistry, School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China.

^b Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao, 266580, P.R. China.

^c School of Mining & Petroleum Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4, Canada.

* Corresponding author. Email address: hongbinyang@upc.edu.cn (H. Yang); kangwanli@126.com (W. Kang)

Experimental:

Calculation of species distribution

The dissociation constant (pK_a) of HB and OA are found at 7.61 and 10.65 respectively at 25°C on a website (<u>https://www.chemicalbook.com</u>). As a monobasic acid, the HB has two states of natural and deprotonation (HB⁻) at the same pH, and the distribution of the species at different pH conditions can be calculated by the equation 1-2:

$$[HB]\% = \frac{c_{[H^+]}}{K_a + c_{[H^+]}} \times 100\%$$
(1)

$$[HB^{-}]\% = \frac{K_{a}}{K_{a} + c_{[H^{+}]}} \times 100\%$$
⁽²⁾

As we know, the K_a and $c_{[H]}^+$ can be calculated from pK_a and pH value by the following equations:

$$pK_a = -\lg K_a \tag{3}$$

$$pH = -\lg c_{[\mathrm{H}^+]} \tag{4}$$

According to the above formula, we can calculate the species distribution of HB at different pH, and the species distribution of OA is calculated using the same method.

$$[OA]\% = \frac{K_{a}}{K_{a} + c_{[H^{+}]}} \times 100\%$$
(5)

$$[OA^{+}]\% = \frac{c_{[H^{+}]}}{K_{a} + c_{[H^{+}]}} \times 100\%$$
(6)

The species distribution calculation of CTAB/HB/OA solution is more complicated due to the fabrication of HB-OA, and the HB and OA are present as HB, HB⁻, OA, OA⁺ (protonated OA), HB-OA and HB-OA⁻ (deprotonated HB-OA) in this condition. However, the relationship between the conversion of surfactant and pH (X_{pH}) can be concluded in equation 7 from the results of ¹H NMR:

$$S\% = (0.0452 X_{pH}^{5} - 1.7915 X_{pH}^{4} + 26.6361 X_{pH}^{3} - 182.3109 X_{pH}^{2} + 574.0762 X_{pH} - 663.9291) \times 100\%$$
(7)

Besides, the ability of HB and HB⁻ to form the anionic surfactant through the imine bond is equally. Therefore, the content of HB-OA and HB-OA⁻ can be calculated by equation 6 and 7:

$$[HB-OA]\% = S\% * [HB]\%$$
(8)

$$[HB-OA^{-}]\% = S\% * [HB^{-}]\%$$
(9)

And the residual HB and HB⁻ at different pH can be calculated by the following equations:

$$R_{\rm [HB]}\% = [\rm HB]\% - [\rm HB-OA]\%$$
⁽¹⁰⁾

$$R_{[\rm HB^{-}]}\% = [\rm HB^{-}]\% - [\rm HB-OA^{-}]\%$$
(11)

For the residual OA, it is also divided into protonated and natural states, and in accordance with the distribution of equations 5 and 6. So the species distribution of OA was obtained from equation 12 and 13:

$$R_{\rm [OA]}\% = (1 - S\%)*[OA]\%$$
(12)

$$R_{[OA^{+}]}\% = (1 - S\%)*[OA^{+}]\%$$
(13)

Additional Results:

Fig.S1 FTIR spectra of HB (red), OA (black), and HB-OA (blue).

Fig.S2 Variation in surface tension with concentration of HB-OA at pH 12.02 and 25 $^\circ\!\!\mathbb{C}.$

Fig.S3 Macroscopic appearance of (A) CTAB/HB and (B) CTAB/phenol aqueous solution at various pH and 25°C.

Fig.S4 The ¹H NMR spectra of CTAB/HB at different pH and 25°C.

Fig.S5 Variation of chemical shift change $\Delta \delta$ on the proton b at different pH.

Fig.S6 Effects of pH on the hydrodynamic diameter of the aggregates at 25°C.

Fig.S7 Effects of pH on the average diameter size at 25°C.

Fig.S8 Steady (A) and dynamic (B) rheological behaviors of CTAB/HB/OA solutions at different pH and 25 °C.

Fig.S9 The ^1H NMR spectra of CTAB/HB/OA at different pH and 25°C.

Fig.S10 Species distribution resulting from an aqueous solution of HB at 25 $^\circ\!\!\mathrm{C}.$

Fig.S11 Species distribution resulting from an aqueous solution of OA at 25 $^{\circ}\!\!\mathrm{C}.$

Fig.S12 Chemical structures of HB⁻, OA⁺, HB-OA and HB-OA⁻.

Fig.S13 Species distribution resulting from an aqueous solution of HB/OA at 25 $^\circ\!\!\mathrm{C}.$

Fig.S14 Macroscopic appearance of HB/OA aqueous solution at various pH and 25°C.

Fig.S15 Variation in surface tension with concentration of CTAB/HB/OA at (A) pH=5.98, (B) pH=7.01, (C) pH=7.99, (D) pH=10.01, (E) pH=12.02, and

25°C.