Electronic Supplementary Information

The detailed calculation processes of the ODA⁺ and ODA²⁺ concentrations via the potentiometric titration:

For the ODA solutions in the presence of different H⁺ concentrations, there were two ionization equations:

 $ODA^{2+} \rightleftharpoons ODA^{+} + H^{+}$

 $ODA^+ \rightleftharpoons ODA + H^+$

Because there was no precipitate in all solutions (r = 1:1.5, 1:2 and 1:4, [ODA] = 250 mg/L), the first step should be dominant, whose equilibrium constant should be:

$$Ka = \frac{[ODA^{+}][H^{+}]}{[ODA^{2}^{+}]}$$
(1)

The potentiometric titration was employed to determine the equilibrium constant of ODA. When the NaOH solution (its volume and concentration are V_0 and C_0 , respectively) was added to the ODAⁿ⁺ solution (its volume and concentration are V_1 and C_1 , respectively), the ODA⁺ and ODA²⁺ concentrations could be obtained by the following equation:

$$[ODA^{+}] = c_1 \frac{V_1}{V_1 + V_0}$$
(2)

$$[ODA^{2+}] = c_0 \frac{V_0}{V_0 + V_1} - c_1 \frac{V_1}{V_1 + V_0}$$
(3)

The solution pH was measured to calculate the H⁺ concentration:

$$\left[H^{+}\right] = 10^{-pH}$$
(4)

The obtained [ODA⁺], [ODA²⁺], and [H⁺] were substitute into equation (1),

$$Ka = 2.84464623 \times 10^{-5}$$

Based on the equation (1),

$$[ODA^{+}] = Ka \frac{[ODA^{2+}]}{[H^{+}]}$$
(5)

And another equation,

$$[ODA^+]+[ODA^{2+}] = 1.2485 \text{ mmol/L} (250 \text{ mg/L})$$
 (6)

Finally, we could calculated the [ODA⁺] and [ODA²⁺] at different pH values (Table S1).

Table S1 The ODA⁺ and ODA²⁺ concentrations at different ODA:HCl molar ratios

ODA:HCl	ODA ⁺ concentration	ODA ²⁺ concentration
molar ratio	(mmol/L)	(mmol/L)
1:1.5	0.8655	0.3830
1:4	1.398×10-2	1.2345