Electronic Supplementary Information

The detailed calculation processes of the ODA^{+}and ODA^{2+} concentrations via the potentiometric titration:

For the ODA solutions in the presence of different H^{+}concentrations, there were two ionization equations:

$$
\begin{aligned}
& \mathrm{ODA}^{2+} \rightleftharpoons \mathrm{ODA}^{+}+\mathrm{H}^{+} \\
& \mathrm{ODA}^{+} \rightleftharpoons \mathrm{ODA}^{+} \mathrm{H}^{+}
\end{aligned}
$$

Because there was no precipitate in all solutions ($r=1: 1.5,1: 2$ and 1:4, [ODA] $=$ $250 \mathrm{mg} / \mathrm{L}$), the first step should be dominant, whose equilibrium constant should be:

$$
\begin{equation*}
K a=\frac{\left[O D A^{+}\right]\left[H^{+}\right]}{\left[O D A^{2+}\right]} \tag{1}
\end{equation*}
$$

The potentiometric titration was employed to determine the equilibrium constant of ODA. When the NaOH solution (its volume and concentration are V_{0} and C_{0}, respectively) was added to the $\mathrm{ODA}^{\mathrm{n}+}$ solution (its volume and concentration are V_{1} and C_{1}, respectively), the ODA^{+}and ODA^{2+} concentrations could be obtained by the following equation:

$$
\begin{gather*}
{\left[O D A^{+}\right]=c_{1} \frac{V_{1}}{V_{1}+V_{0}}} \tag{2}\\
{\left[O D A^{2+}\right]=c_{0} \frac{V_{0}}{V_{0}+V_{1}}-c_{1} \frac{V_{1}}{V_{1}+V_{0}}} \tag{3}
\end{gather*}
$$

The solution pH was measured to calculate the H^{+}concentration:

$$
\begin{equation*}
\left[H^{+}\right]=10^{-p H} \tag{4}
\end{equation*}
$$

The obtained $\left[\mathrm{ODA}^{+}\right],\left[\mathrm{ODA}^{2+}\right]$, and $\left[\mathrm{H}^{+}\right]$were substitute into equation (1),

$$
\mathrm{Ka}=2.84464623 \times 10^{-5}
$$

Based on the equation (1),

$$
\begin{equation*}
\left[O D A^{+}\right]=K a \frac{\left[O D A^{2+}\right]}{\left[H^{+}\right]} \tag{5}
\end{equation*}
$$

And another equation,

$$
\begin{equation*}
\left[\mathrm{ODA}^{+}\right]+\left[\mathrm{ODA}^{2+}\right]=1.2485 \mathrm{mmol} / \mathrm{L}(250 \mathrm{mg} / \mathrm{L}) \tag{6}
\end{equation*}
$$

Finally, we could calculated the $\left[\mathrm{ODA}^{+}\right]$and $\left[\mathrm{ODA}^{2+}\right]$ at different pH values (Table S1).

Table S1 The ODA^{+}and ODA^{2+} concentrations at different ODA: HCl molar ratios

ODA HCl molar ratio	ODA^{+}concentration $(\mathrm{mmol} / \mathrm{L})$	ODA^{2+} concentration $(\mathrm{mmol} / \mathrm{L})$
$1: 1.5$	0.8655	0.3830
$1: 4$	1.398×10^{-2}	1.2345

