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S1. Reconfiguration of droplet under electrowetting

In the inwards motion of droplet, upon applying the electrical potential, the contact angle 

decreases abruptly which leads to the movement of the droplet towards the apex of the 

wedge. The time evolution of the curvature corresponding to the upper and lower 

interfaces at each and every time instant, are very similar to each other during this 

translation (see the variation of radii of fits to the upper and lower interfaces). There is a 

fast increase just after the voltage is applied due to spreading of droplet over the wedge 

walls, and then the radii decay together to a value corresponding to drop’s radius in its 

new equilibrium configuration. It implies that the pressure inside the droplet is 

equilibrated quickly, but not the contact angles. Figure S1 shows that the contact angle at 

the bottom is slightly larger compared to the top one throughout the translation. The 

contact angle at the top and bottom interface represent the advancing and receding 

contact angles respectively as the droplet approaches the apex of the wedge. Both the 

angles decrease upon applying voltage and eventually reach the Young-Lippmann angle 
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of  at 100 V rms. However, the lower (advancing) contact angle takes 𝜃𝑒 = 123° ± 2.32°

more time to decay to this asymptotic value. The spherical shape of droplet when it 

equilibrates after the translation has been manifested by fits to the top and bottom 

interfaces (green and red circles respectively). We see that; indeed, both the fitting circles 

are overlapping, meaning that the droplet has the same curvature at top and bottom and 

both the interfaces are parts of a single sphere.

Figure S1: (a) time-lapse images of the drop of V=12 µl in a wedge of opening angle  within a time window 𝛽 = 12.5°
of  sec starting from EW actuation of U=100 V rms (from left to tight). The series shows drop configuration in the ~2
wedge as it translates towards the wedge apex. The red (green) circles shows the fit to the drop’s top (bottom) interface 
at each and every time instants. The time evolution of radii of the fitting circles as well as the top and bottom contact 
angles are shown in (d) and (e) respectively.



Page 3 of 8

S2. Position of droplet with regards to the wedge apex

In the equilibrium configuration, the position of the droplet is defined as the distance 

between the center of the sphere from the apex. For out of equilibrium configurations in 

which the droplet is not a truncated sphere anymore, we consider the intersection of the 

droplet with the bisector plane of the wedge which is a circle in xz plane. Then we define 

the position of droplet as the distance of the center of this circle from the apex.

Figure S.2: The position of the droplet is defined as the distance of its center from the wedge apex. The solid lines show 
the contour of the droplet in initial and final equilibrium configuration while the dashed line represents the out-of-
equilibrium profile of the droplet.
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S3. Voltage dependent translation of droplet under EW

Figure S3 shows the position of droplet under EW for multiple voltage levels. The droplet 

is  in volume and the wedge opening angle is . While the drop’s initial 𝑉 = 8 𝜇𝑙 𝛽 = 9.5°

position in inwards motions (terminal position in outwards motion) is the same for all 

the cases, the terminal (initial) position depends on the applied electrical potential.

Figure S.3: Translation of a droplet ( ) in a wedge ( ) under EW at multiple voltage levels from 𝑉 = 8 𝜇𝑙 𝛽 = 9.5°
60,70, 80, 90, and 100 V rms. (a) the inwards translation upon applying the voltage (b) the outwards translation 
upon removing the voltage. (c) and (d) are the representation of data in logarithmic scale for inwards and outwards 
translations respectively. The semi-log plots depict more clearly the two relaxation regimes for each case. 
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S4. The LBM algorithm

The lattice-Boltzmann method integrates the hydrodynamic equations of motion by 

solving the discretized Boltzmann equation from Kinetic Theory. Our method makes use 

of three particle distribution functions to solve the hydrodynamic equations coupled with 

the electrostatics forces. Here, we use the D2Q9 model, i.e., 2-dimensional simulations 

with a 9-velocity vector set.

The hydrodynamic behavior is modelled by the Navier-Stokes equation, in the 

incompressible limit,

𝜌(∂𝑡 + 𝑣 ⋅ ∇)𝑣 =‒ ∇𝑝 + 𝜌𝜈∇2𝑣 + 𝑓, (1)

where  is the density,  is the velocity field,  is the pressure,  is the kinematic viscosity 𝜌 𝑣 𝑝 𝜈

and  are body forces which include the capillary and electric forces. Eq. (1) is solved by 𝑓

the first lattice-Boltzmann equation  
𝑓𝑞(𝑥 + 𝑐𝑞,𝑡 + 1) = 𝑓𝑞(𝑥,𝑡) +

𝑄 ‒ 1

∑
𝑟 = 0

Λ𝑞𝑟[𝑓 ‒ 𝑓𝑒𝑞]𝑟(𝑥,𝑡)

where  is the discretized position,  is the set of velocities, and  is the discretized 𝑥 {𝑐𝑞}𝑄 ‒ 1
𝑞 = 0 𝑡

time variable. The momentum density of the fluid mixture is obtained by calculating the 

first moment of the distribution function, i.e.,  and the equilibrium 
𝜌𝑣 =

𝑄 ‒ 1

∑
𝑞 = 0

𝑐𝑞𝑓𝑞

distribution function is such that satisfies the relations: ,  and 

𝑄 ‒ 1

∑
𝑞 = 0

𝑓𝑒𝑞
𝑞 = 𝜌

𝑄 ‒ 1

∑
𝑞 = 0

𝑐𝑞𝑓𝑒𝑞
𝑞 = 𝜌𝑣

 where  is the pressure tensor such that  [1]. We 

𝑄 ‒ 1

∑
𝑞 = 0

𝑐𝑞𝑐𝑞𝑓𝑒𝑞
𝑞 = Π + 𝜌𝑣𝑣

Π ‒ ∇ ⋅ Π =‒ ∇𝑝 + 𝑓

use a multi-relaxation time (MRT) collision operator for stability while setting a large 

viscosity ratio of the conducting and dielectric phases,  and , respectively (see [2] for 𝜈𝑐 𝜈𝑑

further details).
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The boundary conditions are specified following Ref. [3], this is a bounce-back algorithm 

in which the velocity of the boundaries are prescribed. At the solid walls, the no-slip 

boundary condition is enforced fixing the velocity . The driving velocity of the flow 𝑣𝑤𝑎𝑙𝑙𝑥̂

at the openings is prescribed using a parabolic profile of the vertical coordinate , 𝑦

, where  is adjusted to keep the fluid-fluid interface at a 𝑣𝑜𝑝𝑒𝑛 = [𝑣𝑤𝑎𝑙𝑙 ‒ 𝑣0 𝑦(𝐿𝑦 ‒ 𝑦)]𝑥̂ 𝑣0

fixed position at the centre axis of the channel.

To allow motion of the contact lines after the no-slip boundary condition, we include 

diffusive phenomena by solving the Cahn-Hilliard equation,

(∂𝑡 + 𝑣 ⋅ ∇)𝜙 = 𝑀∇2𝜗, (2)

where  is the phase field, i.e., a quantity that distinguishes the conducting (𝜙 = 𝜙(𝑥,𝑡)

) from the dielectric ( ) phases,  is the mobility set to unity, and  is the 𝜙 > 0 𝜙 < 0 𝑀 𝜗

chemical potential of the fluid mixture. Eq. (2) is solved by using a second lattice-

Boltzmann equation, . We identify the field phase variable with 𝑔𝑞(𝑥 + 𝑐𝑞,𝑡 + 1) = 𝑔𝑒𝑞
𝑞 (𝑥,𝑡)

the zeroth moment, . The corresponding equilibrium distribution function 
𝜙 =

𝑄 ‒ 1

∑
𝑞 = 0

𝑔𝑞

constrained by the identities: ,  and .

𝑄 ‒ 1

∑
𝑞 = 0

𝑔𝑒𝑞
𝑞 = 𝜙

𝑄 ‒ 1

∑
𝑞 = 0

𝑐𝑞𝑔𝑒𝑞
𝑞 = 𝜙𝑣

𝑄 ‒ 1

∑
𝑞 = 0

𝑐𝑞𝑐𝑞𝑔𝑒𝑞
𝑞 = 𝑀𝜗𝐼 + 𝜙𝑣𝑣

The electrostatic forces are obtained after solving Laplace’s equation for the electric 

potential, , in the dielectric phase𝜓

∇2𝜓 = 0, (3)

and setting it to the constant  in the conducting phase.𝜓 = 𝑈

We used a diffusive process in a similar fashion to relax the electric potential into Eq. (3), 

this can be done by proposing the third lattice-Boltzmann equation, 

. The equilibrium distribution function is defined such that, ℎ𝑞(𝑥 + 𝑐𝑞,𝑡 + 1) = ℎ𝑒𝑞
𝑞 (𝑥,𝑡)
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. The boundary conditions are identical to the evaporation dynamics of Ref. 

𝑄 ‒ 1

∑
𝑞 = 0

ℎ𝑒𝑞
𝑞 = 𝜓

[4], setting a value for the potential at each electrode as an open boundary.

The thermodynamic behavior of the fluids is set by defining the Helmholtz free energy 

of the fluid mixture, in the diffuse interface approximation,

𝐹[𝜙,𝜓]≔∫[ 3𝛾
8𝑙(𝜙4

4
‒

𝜙2

2
+

𝑙2

2
|∇𝜙|2) ‒

𝜖
2

|∇𝜓|2]𝑑Ω + ∫𝜒𝜙𝑑𝑆, (4)

where  is the surface tension,  is a constant related to the interface thickness, and  is 𝛾 𝑙 𝜒

called the wetting potential that can be tuned to change the wettability of the phases, i.e., 

 adjust the contact angle , and  is the electric permittivity of the dielectric phase,  𝜃𝑌 𝜖 𝑑Ω

represents a differential element of volume and  of surface. The chemical potential is 𝑑𝑆

given by , and the electric charge density, . From these, the capillary 𝜗≔𝛿𝐹/𝛿𝜙 𝜚≔ ‒ 𝛿𝐹/𝛿𝜓

and electric forces are expressed as . The simulation is contained in a box 𝑓≔ ‒ 𝜙∇𝜗 ‒ 𝜚∇𝜓

of size . All parameters are summarized in Table 1.𝐿𝑥 × 𝐿𝑦

Table 1. Simulation parameters.

𝐿𝑥 400 𝐿𝑦 60

𝜈𝑐 1/12 𝜈𝑑 1/3

𝜌 1 𝜖 1/3

𝑙 5 𝛾 8 × 10 ‒ 3

𝑑 4 𝜃𝑌 143.62°
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