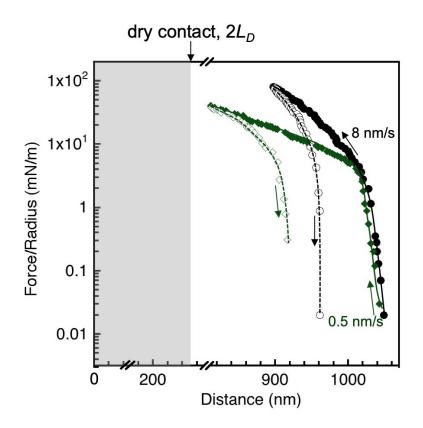
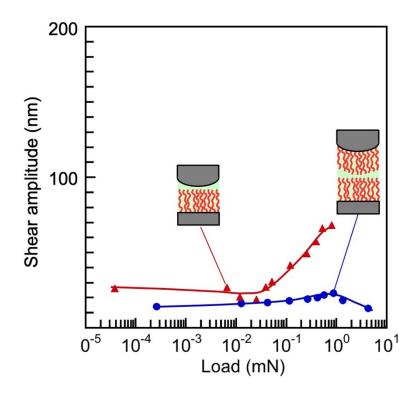
Supplemental Material For:

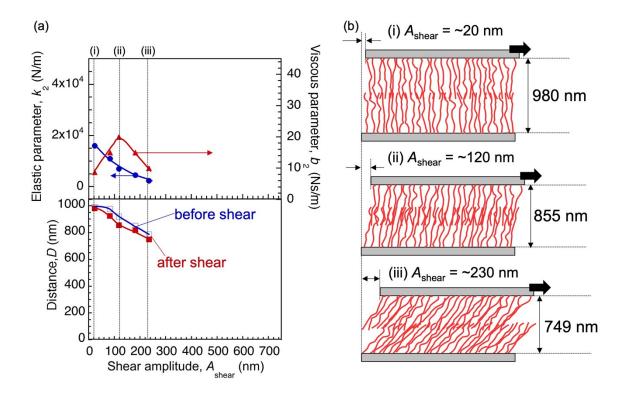
Dynamics of Lubricous, Concentrated PMMA Brush Layers Studied by Surface Forces and Resonance Shear Measurements

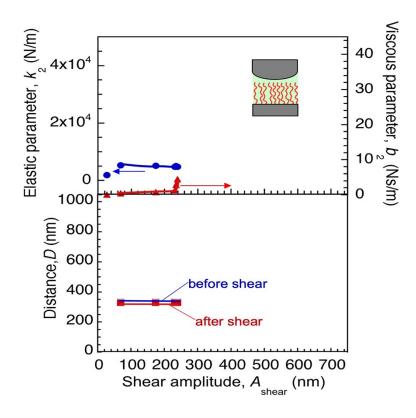

Masashi Mizukami^a, Masao Gen¹, Shu-Yao Hsu^b, Yoshinobu Tsujii^b and Kazue Kurihara^{a,c*}

 ^a Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577, Japan


^b Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan

^c New Industry Creation Hatchery Center, Tohoku University, Sendai, Sendai, Sendai, 980-8599,


Japan


Fig. S1 Plots of force/radius (*F*/*R*) vs surface separation distance (*D*) between PMMA brush layers fabricated on silica surfaces. The force profiles were obtained with driving speeds of 8 nm/s (filled and open circle) and 0.5 nm/s (filled and open diamond). The *D* was obtained by measuring relative distance (*D*') from the dry contact of PMMA, and by adding the two PMMA layer thicknesses ($2L_{\rm D}$).

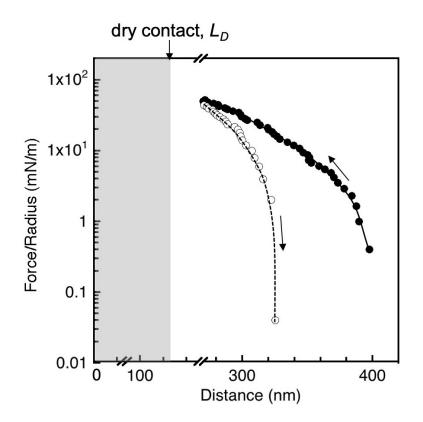

Fig. S2 Plots of shear amplitudes vs load (*L*) obtained for PMMA-PMMA brush layers (blue filled circle) as well as for PMMA brush-silica surface (red filled triangle).

Fig. S3 (a) Plots of the elastic (k_2 , filled circle) and damping (b_2 , filled triangle) parameters (top), and distance (*D*) before (open square) and after (filled square) shear measurements (bottom) against the shear amplitude (A_{shear}) obtained at the applied loads of 0.85 mN. (b) Schematic illustration of PMMA brushes drawn based on the results at the shear amplitudes of (i) $A_{\text{shear}} = 20$ nm, (ii) $A_{\text{shear}} = 120$ nm, and (iii) $A_{\text{shear}} = 230$ nm.

Fig. S4 Plots of the elastic (k_2 , filled circle) and damping (b_2 , filled triangle) parameters (top), and distance (*D*) before shear (open square) and after (filled square) shear measurements (bottom) against the shear amplitude (A_{shear}) obtained at the applied loads of 0.79 mN for PMMA brush-silica.

Fig. S5 Plots of force/radius (*F/R*) vs surface separation distance (*D*) between a PMMA brush layer and a silica surfaces. The force profile was obtained with driving speeds of 8 nm/s (filled circle for approach and open circle for retraction). The *D* was obtained by measuring relative distance (*D*^{$^{\circ}$}) from the dry contact of PMMA, and by adding a PMMA layer thickness (*L*_D).