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S1 Free energy of loop extruding polymer brush

S1.1 Short time scale

We treat chromatin as a polymer brush end-grafted to a surface with grafting
density σ in an aqueous solution at a physiological salt concentration. The
electric charges of chromatin are screened by salt ions in the solution. Each
chain is much longer than the Kuhn length and thus is treated as a flexible
chain composed of N Kuhn segments of length la. Cohesin is loaded at the
grafted ends of the chains and extrudes these chains with a constant rate τ−1s .

Cohesin divides the chain into the loop subchain, which has been extruded,
and the arm subchain, which has not been extruded, see fig. 1 in the main
article. For short enough times, t < tth, the height of the arm subchain is larger
than the height of the loop subchain. A part of the arm subchain occupies the
top layer above the loop subchain and the rest of the arm subchain coexists
with the loop subchain in the bottom layer. We assume that the loop subchain,
the arm subchain in the bottom layer, and the arm subchain in the top layer
are composed of blobs of size Rlp, Rb, and Rt, each containing glp, gb, and gt
Kuhn segments, respectively. Here and after, we use the subscripts ‘lp’, ‘t’, and
‘b’ to represent the loop subchain in the bottom layer, the subchain in the top
layer, and the arm subchain in the bottom layer. The free energy of each blob
has the form
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The free energy per chain thus has the form
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where Nlp is the number of Kuhn segments of the loop subchain, Nt is the
number of Kuhn segments of the arm subchain in the top layer, and Nb is the
number of Kuhn segments of the arm subchain in the bottom layer.

The heights of the top layer and the bottom layer have the forms

ht = Rt
Nt

gt
(S5)

hb = Rb
Nb

gb
= Rlp

Nlp

2glp
. (S6)

For simplicity, we here treat a loop as two subchains that are connected at
the top. This is taken into account by the factor 2 in the denominator of the
rightmost term of eq. (S6). The size of the blobs is determined by the area per
subchains [1] and this leads to the forms

σlp = R−2lp (S7)

σb = R−2b (S8)

σt = R−2t , (S9)

where σlp is the surface density of loop subchains, σb is the surface density
of arm subchains at the bottom layer, and σt is the surface density of arm
subchains at the top layer. The surface densities, σlp, σb, and σt, are related by
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to the grafting density σ of the chain.
Substituting eqs. (S5) - (S9) into eq. (S4) leads to

F = Flp + Farm, (S11)

where the free energy (per chain) Flp of the loop subchain and the free energy
(per chain) Farm of the arm subchain have the forms
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Substituting eqs. (10) and (11) in the main article into eqs. (S12) and (S13) leads
to eqs. (5) and (6) in the main article. The first term of eq. (S12) accounts for
the fact that the loop is composed of two subchains of length Nlp/2.
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S1.2 Longer time scale

For longer time scales, tth < t < τex, the height of the loop subchain is larger
than the height of the arm subchain. The top layer is thus occupied by a part of
the loop subchain. The rest of the loop subchain and the arm subchain coexist
in the bottom layer. Eq. (S4) is still applicable to this time scale because it
just represents the fact that the free energy per chain is the free energy of each
blob multiplied by the number of blobs. The only difference between this time
regime and the short time regime is the fact that the blobs in the top layer are
those of the loop subchain.

The heights of the top and bottom layers have the forms

ht =
Nt

2gt
Rt (S14)

hb =
Nb

gb
Rb =

Nlp

2glp
Rlp. (S15)

The fact that the size of each type of blob is determined by the area per subchain
leads to the forms

σb = R−2b (S16)

σlp = R−2lp (S17)

σt = R−2t . (S18)

The surface densities, σb, σlp, and σt, obey the relationship
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Substituting eqs. (S14) to (S18) into eq. (S4) leads to the form

F = Flp + Farm, (S20)

where the free energy (per chain) Flp of the loop subchain and the free energy
(per chain) Farm of the arm subchain have the forms
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Substituting eqs. (10) and (11) in the main article into eqs. (S21) and (S22)
leads to eqs. (14) and (15) in the main article.

S2 Dynamics of Alexander brush predicted by
Onsager’s principle

Here we use Onsager’s principle to analyze the dynamics of a polymer brush. In
the brush, flexible chains, each composed of N Kuhn segments of length la, are
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end-grafted to a surface with grafting density σ. Onsager’s principle predicts
that the time evolution equation is derived by minimizing the Rayleighan

R = Φ + Ḟ , (S23)

where Φ is the dissipation function and Ḟ is the time derivative of the free
energy F [3]. We use the Alexander approximation, which assumes that the
concentration of chain segments in the brush is uniform [1, 2]. The dissipation
function of the brush has the form

Φ =
1

2
Nζḣ2(t), (S24)

where ḣ is the time derivative of the brush height h and ζ is the friction constant
per Kuhn segment. The free energy of the Alexander brush has the form [1, 2]
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. (S25)

With eqs. (S24) and (S25), we find for the Rayleighan
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The last term of eq. (S26) is zero for the (usual) case in which the number N of
Kuhn segments in each chain is constant. Minimizing the Rayleighan, eq. (S26),
with respect to the velocity of the brush top ḣ leads to the equation

d

dt
h(t) = − 3kBT

N2ζl2a

[
h(t)− vσN3l2a

3

1

h2(t)

]
. (S27)

For the case in which N is a constant N0, eq. (S27) can be rewritten in the
form

d

dt
h(t) = − 1

τN0

[
h(t)− h3Alx

h2(t)

]
, (S28)

where τN0 denotes the longest relaxation time of the chain (Rouse time) given
by

τN0 =
N2

0 ζl
2
a

3kBT
(S29)

and hAlx is the brush height at equilibrium:

hAlx = N0la

(
vσ

3la

)1/3

. (S30)
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The solution of eq. (S28) has the form

h(t) = hAlx

[
1− (1− h̃30)e−3t/τN0

]1/3
, (S31)

where h̃0 (= h0/hAlx) is the initial height h0 of the brush, rescaled by the
equilibrium value, see also eq. (32) in the main article. For short time scales,
the height h(t) has the asymptotic form

h(t) = hAlx

(
3t

τN0

)1/3

, (S32)

when the initial height h0 is zero.
For the case in which the number N(t) of Kuhn segments per chain is a

function of time (such as the case of loop extruded chains), eq. (S27) can be
rewritten in the form

d

dt
h̃(t) = − 1

τN0

1

Ñ(t)

[
h̃(t)

Ñ(t)
− Ñ2(t)

h̃2(t)

]
, (S33)

where Ñ(t) (= N(t)/N0) is the number of Kuhn segments per chain, rescaled
by the characteristic value N0. The general solution of eq. (S33) is given by

h(t) = hAlx

[
h̃30 + 3

∫ t

0

dt′

τN0

Ñ(t′)e3κ(t
′)

]1/3
e−κ(t), (S34)

where the exponent κ(t) is given by

κ(t) =
1

τN0

∫ t

0

dt′
1

Ñ2(t′)
. (S35)

Eq. (S34) returns to eq. (S32) when N(t) is the constant N0.
First, we consider the case in which chains are reeled from the grafted end

with a constant rate, N(t) = N0 − t/τs, analogous to the situation of the arm
subchain during the loop extrusion process. In this case, the height of the brush
has the form

h(t) = hAlx

[
h̃30 + 3α0

∫ t/τex

0

dt̃′ (1− t̃′)e3α0 t̃
′/(1−t̃′)

]1/3
e−α0 t̃/(1−t̃), (S36)

see fig. S1, where t̃ (= t/τex) is the rescaled time and we define the time scale
ratio in the form

α0 =
τex
τN0

. (S37)

Eq. (S36) has the asymptotic form

h(t) = h0e−α0 t̃/(1−t̃) (S38)
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Figure S1: The brush height h(t) (rescaled by the equilibrium value hAlx) is
shown as a function of time t (rescaled by the time scale τex) when the chains
are reeled from the grafted ends with a constant rate. τex is the time scale of
the reeling process. The curves are derived by using eq. (S36). The values of
time scale ratio α0 (defined by eq. (S37)) are 0.001 (cyan), 0.01 (light green),
0.1 (black), 1.0 (orange), 10.0 (magenta).

for small values of α0 and

h(t) =
[
(1− t̃)3 − (1− h̃30)e−3α0 t̃/(1−t̃)

]1/3
(S39)

for large values of α0.
Second, we consider the case in which the number of Kuhn segments increases

with a constant rate, N(t) = t/τs, analogous to the situation of the loop subchain
during the loop extrusion process. The initial height h0 is zero because there
are no Kuhn segments in the ‘chain’ at t = 0. In this case, the height of the
brush has the form

h(t) = hAlx

[
3α0

∫ t̃

0

dt̃′ t̃′e−3α0(1/t̃
′−1/t̃)

]1/3
, (S40)

see fig. S2. The brush height h(t) has the asymptotic form

h(t) = hAlx

(
3

2
α0t̃

2

)1/3

(S41)

for small values of α0 and

h(t) = hAlxt̃

(
1− t̃

3α0

)
(S42)

for large values of α0.
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Figure S2: The brush height h(t) (rescaled by the equilibrium value hAlx) is
shown as a function of time t (rescaled by the time scale τex) when the number
of Kuhn segments of the chain increases with a constant rate. τex is the time
scale with which the number of Kuhn segments becomes N0. These curves
are derived by using eq. (S40). The values of time scale ratio α0 (defined by
eq. (S37)) are 0.001 (cyan), 0.01 (light green), 0.1 (black), 1.0 (orange), 10.0
(magenta).

S3 Asymptotic form for the short time regime

The dynamics of chains in the brush is determined by eqs. (9), (12), (13) in the
main article. These equations are rewritten in the forms

d

dt̃
h̃ = −α 1

Ñt

(
h̃t

Ñt

− Ñ2
t

h̃2t

)
(S43)

d

dt̃
h̃b = −α

[
4h̃lp

Ñlp

+
h̃lp

Ñb

− (Ñlp + Ñb)2

h̃2lp
− h̃t

Ñt

+
Ñ2

t

h̃2t

]
(S44)

−3

2

h̃2t
Ñt

+ 6
Ñt

h̃t
= −3

2

h̃2b
Ñb

+ 6
Ñlp + Ñb

h̃b
, (S45)

where h̃t (= ht/hAlx) and h̃b (= hb/hAlx) are the brush heights of the top and
bottom layers, rescaled by the equilibrium brush height hAlx. h̃ (= h̃t+h̃b) is the
height of the chain, rescaled by the equilibrium brush height hAlx. Ñt (= Nt/N),
Ñb (= Nb/N), and Ñlp (= Nlp/N) are the number of Kuhn segments of the arm
subchain in the top layer, the arm subchain in the bottom layer, and the loop
subchain, rescaled by the number N of Kuhn segments of each chain. t̃ (= t/τex)
is the time rescaled by the time scale τex of the loop extrusion process. α is the
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ratio of time scales

α =
τex
τN

, (S46)

where τex is the time scale of the loop extrusion process and τN is the longest
relaxation time (Rouse time). The rescaled numbers Ñt and Ñlp of Kuhn seg-
ments have the form

Ñt = 1− t̃− Ñb (S47)

Ñlp = t̃. (S48)

We solve eqs. (S43) - (S45) for the short time regime using the ansatz

h̃t = h̃0 + b1t̃+ b2t̃
2 (S49)

h̃b = a1t̃+ a2t̃
2 (S50)

Ñb = c1t̃+ c2t̃
2. (S51)

We substitute eqs. (S49) to (S51) into eq. (S43) and expand this equation in
the power series of t̃ up to linear order. This leads to the relations

a1 + b1 = −α

(
h̃0 −

1

h̃20

)
(S52)

a2 + b2 = −1

2
α

[
(1 + c1)

(
2h̃0 +

1

h̃20

)
+
b1

h̃0
(h̃0 +

2

h̃20
)

]
. (S53)

In a similar manner, we substitute eqs. (S49) to (S51) into eq. (S44) and expand
this equation in a power series of t̃ up to linear order. We obtain

a1 = −α
[
4a1 +

a1
c1
− (1 + c1)2

a21
−
(
h̄0 −

1

h̄20

)]
(S54)

a2 = −1

2
α

[
4a2 +

a1
c1

(
a2
a1
− c2
c1

)
− (1 + c1)2

a21

(
2c2

1 + c1
− 2a2

a1

)
−

(
h̃0 +

2

h̃20

)(
1 + c1 +

b1

h̃0

)]
. (S55)

We substitute eqs. (S49) - (S51) into eq. (S45) and expand this equation in a
power series of t̃ up to linear order. This leads to the forms

−1

2
h̃20 +

2

h̃0
= −1

2

a21
c21

+ 2
1 + c1
a1

(S56)

−
(

1 + c1 +
b1

h̃0

)(
h̃20 +

2

h̃0

)
= −a

2
1

c21

(
a2
a1
− c2
c1

)
+ 2

1 + c1
a1

(
c2

1 + c1
− a2
a1

)
.

(S57)
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The constants a1 and c1 are derived by using eqs. (S54) and (S56). Eq. (S54)
is rewritten as(

1

α
+ 4 +

1

c1

)
a31 − (1 + c1)2 −

(
h̃0 −

1

h̃20

)
a21 = 0. (S58)

In the limit of α→ 0, h̃b is zero, see eq. (S44) and thus a1 = 0 and c1 = 0. For
small time scale ratio α, the solution of eq. (S58) thus has the form

a31 =
α

1 + α/c1
. (S59)

We used c1 < 1 and a1 < 1 to derive eq. (S59). In the same limit, the solution
of eq. (S56) has the asymptotic form

a31 = 4c21. (S60)

Eqs. (S59) and (S60) lead to

c1 =
−α+

√
α2 + α

2

' 1

2
α1/2. (S61)

Substituting eq. (S61) into eq. (S60) we find

a1 = α1/3. (S62)

By using eq. (S52), the constant b1 can be derived:

a1 + b1 =
α

h̃20
(1− h̃30). (S63)

We retained the right hand side of eq. (S63), even though it is smaller than a1,
because it is the leading order term of the brush height h.

Substituting eqs. (S61) and (S62) into eqs. (S55) and (S57) and omitting the
higher order terms with respect to α, we arrive at

− 6

α2/3
a2 +

8

α5/6
c2 = −

(
1 + c1 +

b1

h̃0

)(
h̃20 +

2

h̃0

)
(S64)

4

α
a2 −

6

α2/3
c2 =

(
1 + c1 +

b1

h̃0

)(
h̃0 +

2

h̃20

)
. (S65)

By solving eqs. (S64) and (S65), the constants a2 and c2 are derived:

c2 = −1

4

α5/6

h̃0

(
1 +

h̃30
2

)
(S66)

a2 =
α

2h̃20

(
1 +

h̃30
2

)
. (S67)
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Substituting eqs. (S61) and (S63) into eq. (S53) we obtain

a2 + b2 = −1

2

α

h̃20
(1 + 2h̃30). (S68)

For the short time regime, the rescaled height h̃b of the bottom layer has
the form

h̃b = α1/3t̃, (S69)

which is derived by substituting eq. (S62) into eq. (S50). Eq. (S69) is equal
to eq. (28) in the main article. The rescaled height h̃ (= h̃t + h̃b) of the arm
subchain has the form

h̃ = h̃0 +
α

h̃20
(1− h̃30)t̃− 1

2

α

h̃20
(1 + 2h̃30)t̃2, (S70)

which we derived by using eqs. (S63) and (S68). We retained the second order
term with respect to the power of t̃ because the first order term is zero for
h̃0 = 1. Eq. (S70) is equal to eq. (29) in the main article. Finally, the rescaled
number Ñb of chain segments of the arm subchain in the bottom layer has the
form

Ñb =
1

2
α1/2t̃. (S71)

Including the second order term, the rescaled number Ñb we find

Ñb =
1

2
α1/2t̃− 1

4

α5/6

h̃0

(
1 +

h̃30
2

)
t̃2. (S72)

S4 Approximate solution for t ∼ tth

We here derive approximate solutions of eqs. (S43) to (S45) for the short time
regime. At the beginning of the loop extrusion process, t ∼ 0, the loop subchain
that has been extruded is confined in a space of height hb ∼ 0. The dynamics of
the loop subchain is thus governed by the excluded volume interactions, the third
term of eq. (S44). Retaining only that third term, the approximate solution of
eq. (S44) follows to be

h̃lp(t) = α1/3t̃. (S73)

Eq. (S73) is indeed equal to eq. (S69), derived by the power expansion with
respect to the rescaled time t̃, and is effective for a long period of time, see the
blue curves in fig. 2 of the main article.

The subchain in the top layer is stretched by the loop extrusion process and
thus, for t ∼ tth, the entropic elasticity of the subchain dominates the excluded
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Figure S3: The number Nb of Kuhn segments of the arm subchain in the bottom
layer (rescaled by the total number N of Kuhn segments of the chain) is shown
as a function of time t (rescaled by the time scale τex of the loop extrusion
process). We used α = 0.05 for the time scale ratio α (defined by eq. (S46)).
The broken curve in the short time regime is derived by using eq. (S71). The
dotted curve in the same regime is derived by using eq. (S72). The broken curve
at t ∼ tth (= 0.9282) is derived by using eq. (S75). The dotted curve in the
same regime is derived by using eq. (S76).
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volume interactions in the top layer. With this approximation, eq. (S45) is
rewritten in the form

−3

2

h2t
N2

t

' −3

2

h2b
N2

b

+
6

α1/3
, (S74)

where we used eq. (S73) and Nlp � Nb. For t ∼ tth, we assume that the arm
chain in the bottom layer is stretched and the entropic elasticity of this subchain
dominates the excluded volume interactions in the bottom layer. With this
assumption, the solution of eq. (S74) is given by

Ñb =
α1/3t̃(1− t̃)

h̃
, (S75)

see the broken curve at t ∼ tth in fig. S3. We used eq. (S73) and Ñt = 1− t̃−Ñb

to derive eq. (S75). Taking into account the second term of the right hand side
of eq. (S74) by the first order perturbation leads to the form

Ñb =
α1/3t̃(1− t̃)

h̃
− 2t̃(1− t̃)3

h̃3

(
1− α1/3t̃

h̃

)(
1− α1/3(1− t̃)

h̃

)
,

(S76)

see the dotted curve at t ∼ tth in fig. S3. At the crossover time tth, the height of
the arm subchain is equal to the height of the loop subchain, h̃ = h̃b (' α1/3t̃),
and the number Ñb of Kuhn segments of the arm chain in the bottom layer is
1− t̃. Both eqs. (S75) and (S76) satisfy these conditions. Although eq. (S76) is
the better approximation, we use eq. (S75) for its simplicity.

Substituting eq. (S75) into eq. (S43) leads to

d

dt̃
h̃(t̃) = −α 1

(1− t̃)2
h̃

1− α1/3t̃/h̃
, (S77)

where we neglected the second term of eq. (S43). Eq. (S77) is rewritten in the
form

d

dt̃
y(t̃) +

y(t̃)

t̃
+ α

1

(1− t̃)2
y2(t̃)

y(t̃)− 1
= 0, (S78)

where we used the variable transformation y(t̃) = h(t)/(α1/3t̃). By solving
eq. (S78) for y(t̃) > 1, we arrive at

h(t) = h0e−αt̃/(1−t̃). (S79)

Eq. (S79) is equal to eq. (29) in the main article and is indeed equal to the
case in which we neglect the distinction between the top and bottom layers and
the excluded volume interactions, see eq. (S38). This is not surprising as the
only difference between the subchains in the top and bottom layers is that they
experience different magnitudes of the excluded volume interactions due to the
loop subchain in the bottom layer.
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S5 Approximate solution for the long time regime

For longer time scales, tth < t < τex, the dynamics of the brush is determined
by eqs. (16) to (18) in the main article. These equations are rewritten as

d

dt̃
h̃ = − α

Ñt

(
4h̃t

Ñt

− Ñ2
t

h̃2t

)
(S80)

d

dt̃
h̃b = −α

[
h̃b

Ñb

+
4h̃b

Ñlp

− (Ñlp + Ñb)2

h̃2b
− 4h̃t

Ñt

+
Ñ2

t

h̃2t

]
(S81)

− h̃2b
Ñ2

lp

+
Ñlp + Ñb

h̃b
= − h̃2t

Ñ2
t

+
Ñt

h̃t
, (S82)

see the discussion below eqs. (S43) to (S45) for the scheme of rescaling. In this
time regime, the rescaled number of the Kuhn segments of the arm subchain
has the form Ñb = 1 − t̃ and the rescaled number of the loop subchain in the
bottom layer has the form Ñlp = t̃− Ñt.

The arm subchain is strongly stretched in the long time regime and thus the
first term of eq. (S81), the elastic force generated by the arm subchain, domi-
nates over the other terms on the right hand side of this equation. Retaining
only that term, the approximate solution of eq. (S81) has the form

hlp(t̃) = hth

(
1− t̃

1− t̃th

)α
, (S83)

where hth is the height of the chains at t = tth. Eq. (S83) is indeed equal to
eq. (30) in the main article.

In contrast to the arm subchain, the loop subchain is still compressed. The
number of Kuhn segments of the arm subchain is thus smaller than the number
of Kuhn segments of the loop subchain in the bottom layer, Ñb < Ñlp. Eq. (S82)
is approximated by

− h̃2b
Ñ2

lp

+
Ñlp

h̃b
' − h̃2t

Ñ2
t

+
Ñt

h̃t
. (S84)

Eq. (S84) has the solution

h̃lp

Ñlp

=
h̃t

Ñt

. (S85)

By using the relationship Ñlp = t̃− Ñt, eq. (S85) is rewritten as

Ñt =
h̃t

h̃
t̃. (S86)

Substituting eq. (S86) into eq. (S80) leads to

d

dt̃
h̃ = −α h̃

h̃− h̃lp
1

t̃

[
4h̃

t̃
− t̃2

h̃2

]
. (S87)
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The rescaled height h̃ of the chain is derived as a function of t̃ and α by using
eq. (S87).

Eq. (S83) implies that the height of the bottom layer changes only at t ∼ τex
when the time scale ratio α is small. We thus solve eq. (S87) by using hlp(t̃) '
h̃th. The loop subchain is still compressed and thus the excluded volume in-
teractions, the second term of eq. (S87), dominates the entropic elasticity of
the chain, the first term of the same equation. With this approximation, the
solution of eq. (S87) is given by

1

3
h̃3 − 1

2
h̃thh̃

2 +
1

6
h̃3th =

1

2
α(t̃2 − t̃2th). (S88)

For small time scale ratio α, the rescaled height h̃ has the approximate form

h̃(t̃) = h̃th +

√
α

h̃th
(t̃2 − t̃2th). (S89)

S6 Approximate solution for the relaxation pro-
cess

During the relaxation process, t > τex, the height of the chain has the form

h̃(t) =
[
1−

(
1− h̃3ex

)
e−3(t−τex)/τN

]1/3
, (S90)

where h̃ex (= h(τex)/hAlx) is the height of the chain at t = τex, rescaled by the
equilibrium brush height hAlx, see also eq. (31) in the main article. The lateral
pressure generated by the chain is given by eq. (22) in the main article. For
small time scale ratio α, the height of the brush at the end of the loop extrusion
process has the form

h̃ex ' α1/3, (S91)

where we used eq. (S73) and the fact that the period of the time regime, tth <
t < τex, is negligible for small α. The brush height h(τon) = h0 at which cohesin
is loaded onto the chain has the form

h̃0 =
[
1− (1− α) e−3(τon/τN−α)

]1/3
, (S92)

which is derived by substituting eq. (S91) into eq. (S90). Eq. (S92) is equal to
eq. (32) in the main article.

S7 Lateral pressure generated by the brush

The forms of the lateral pressure, Πt(t) and Πb(t), generated by the subchains
in the top and bottom layers are shown in eqs. (7) and (8) in the main article. In

14



the steady state, the lateral pressure generated by the brush can be calculated
from

Π̄‖ =
1

τon

∫ τon

0

dt′Π‖(t
′), (S93)

where Π‖(t) has the form

Π‖(t) = Πt(t) + Πb(t). (S94)

For small rescaled time ratio α, the period of the time regime, tth < t < τex,
is negligible. The rescaled lateral pressure, Π̃t(t̃) (= Πt(t)/ΠAlx), generated in
the top layer has the approximate form

Π̃t(t̃) =
Ñ2

t

h̃t
=

(1− t̃)2

h̃

(
1− α1/3t̃

h̃

)
. (S95)

We used eq. (S75) to derive eq. (S95). In steady state, the lateral pressure Π̄t

generated by the top layer during the loop extrusion process follows to be

Π̄t

ΠAlx
=

τex
τon

∫ t̃th

0

dt̃′ Π̃t(t
′)

=
τex
τon

∫ t̃th

0

dt̃′
(1− t̃′)2

h̃0
eαt̃

′/(1−t̃′)
(

1− α1/3t̃

h̃

)
' τex

τon

∫ 1

0

dt̃′
(1− t̃′)2

h̃0

' 1

3

τex
τon

1

h̃0
. (S96)

We neglected the higher order terms with respect to α to derive the last form
of eq. (S96). The rescaled lateral pressure, Π̃b(t̃) (= Πb(t)/ΠAlx), generated in
the bottom layer has the approximate form

Π̃b(t̃) =
(Ñlp + Ñb)2

h̃lp

' α−1/3t̃. (S97)

We used Ñb < Ñlp and eq. (S73) to derive the last form of eq. (S97). In steady
state, the lateral pressure generated by the bottom layer is approximately given
by

Π̄b

ΠAlx
=

τex
τon

∫ t̃th

0

dt̃′ Π̃b(t′)

' τex
τon

∫ 1

0

dt̃′ α−1/3t̃′

' 1

2

τex
τon

α−1/3. (S98)
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The rescaled lateral pressure Π̃rex(t̃) during the relaxation process has the
form

Π̃rex(t̃) =
1

h̃(t̃)
, (S99)

see eq. (22) in the main article. In steady state, the lateral pressure Π̄rex is
given by

Π̄rex

ΠAlx
=

1

α

τex
τon

∫ τ̃on

1

dt̃
1

h̃(t̃)

=
1

α

τex
τon

∫ u(τ̃on)

u(1)

du
1

(u3 − 1)1/3
, (S100)

where τ̃on (= τon/τex) is the average loading time rescaled by the time scale τex
of the loop extrusion process. The new variable u(t̃) is defined by

u(t̃) =
1

(1− α)1/3
eα(τ̃on−1). (S101)

Using eqs. (S96), (S98), and (S100), we find for the lateral pressure Π̃‖ in
steady state:

Π̄‖ = ΠAlx
τex
τon

[
1

3

1

h̃0
+

1

2
α−1/3 +

1

α

∫ u(τ̃on)

u(0)

du
1

(u3 − 1)1/3

]
. (S102)

For large values of the time scale ratio ατ̃on (= τon/τN ), the lateral pressure
Π̄rex for the relaxation process has the asymptotic form

Π̄rex = ΠAlx

[
1 +

1

ατ̃on

(
log 3

2
− π

6
√

3

)]
. (S103)

The lateral pressure Π̃‖ is thus given by

Π̄‖ = ΠAlx

[
1 +

1

ατ̃on

(
log 3

2
− π

6
√

3

)]
(S104)

for small time scale ratio α, because the first and second terms in the square
bracket of eq. (S102) are higher order terms with respect to α. Eq. (S104) is
equal to eq. (34) in the main article. For small values of the time scale ratio
ατ̃on, the lateral pressure Π̄rex for the relaxation process has the asymptotic
form

Π̄rex =
1

2
ΠAlx

[
(3u(τ̃on)− 3)2/3 − (3u(1)− 3)2/3

]
' 1

2
ΠAlx

[
(3ατ̃on − 2α)2/3 − α2/3

]
. (S105)
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The asymptotic form of the lateral pressure Π‖ is given by

Π‖

ΠAlx
=

1

3

1

τ̃on
(3ατ̃on − 2α)

−1/3
+

1

2

1

ατ̃on
(3ατ̃on − 2α)

2/3
, (S106)

which follows from substituting eqs. (S92) and (S105) into eq. (S102) and omit-
ting the higher order terms with respect to α. Eq. (S106) is equal to eq. (35) in
the main article.
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