## Soft Matter

# ARTICLE

Supplementary Information for "Design rules for glass formation from model molecules designed by a neural-network-biased genetic algorithm"

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/

Venkatesh Meenakshisundaram,<sup>a</sup> Jui-Hsiang Hung<sup>a</sup> and David S. Simmons<sup>a,\*</sup>

## Structural information for extremal fragility molecules

Here we provide, in Supplementary Table 1 and Supplementary Table 2, angular data required to construct rigid molecules identified to have maximal and minimal fragilities, respectively, for each n. Angles are employed in the algorithm for rigid body generation section described in the main text.

Supplementary Table 1. Azimuthal and polar angles for construction of 3-bead, 4-bead, and 6-bead rigid molecules identified to have maximal fragility.

|        | 3 <sup>rd</sup> bead |   | 4 <sup>th</sup> bead |        | 5 <sup>th</sup> bead |        | 6 <sup>th</sup> bead |      |
|--------|----------------------|---|----------------------|--------|----------------------|--------|----------------------|------|
|        | θ                    | ф | θ                    | ф      | θ                    | ф      | θ                    | ф    |
| 3-bead | 67.5                 | - | -                    | -      | -                    | -      | -                    | -    |
| 4-bead | 281.25               | - | 326.25               | 0.0    | -                    | -      | -                    | -    |
| 6-bead | 270.0                | - | 253.13               | 129.38 | 196.86               | 343.13 | 101.25               | 67.5 |

Supplementary Table 2. Azimuthal and polar angles for construction of 3-bead, 4-bead, and 6-bead rigid molecules identified to have minimal fragility.

|        | 3 <sup>rd</sup> bead |   | 4 <sup>th</sup> bead |        | 5 <sup>th</sup> bead |        | 6 <sup>th</sup> bead |     |
|--------|----------------------|---|----------------------|--------|----------------------|--------|----------------------|-----|
|        | θ                    | φ | θ                    | ф      | θ                    | φ      | θ                    | ф   |
| 3-bead | 157.5                | - | -                    | -      | -                    | -      | -                    | -   |
| 4-bead | 354.38               | - | 185.63               | 331.88 | -                    | -      | -                    | -   |
| 6-bead | 163.13               | - | 11.25                | 213.75 | 174.36               | 123.75 | 0.0                  | 0.0 |

#### Results for dynamical quantities at computational timescales

In the main text we report on a number of correlations between  $T_g$  and fragility, as defined based on an extrapolation to an experimental timescale, and other dynamic and thermodynamic quantities. Supplementary Figure 1 below replicates many of the correlation figures in the main text, but employing computational timescale values of  $T_g$  and m, illustrating that the trends reported on in the main manuscript are qualitatively insensitive to this choice.





Supplementary Figure 1. Correlation diagrams shown in the main text, but for fragilities and glass transition temperatures computed at a computational timescale of 10<sup>4</sup> LJ time units.

### **Additional Supplementary Data**

Below we provide data on correlations between a large range of dynamic and thermodynamic properties quantified for the systems simulated in this study. Supplementary Table 3 provides values of R<sup>2</sup> for second order polynomial fits between pairs of properties studied. These correlations are assessed at the level of all data involved in the study, and separately for each molecular size. We have additionally tested linear and higher order polynomial correlations for many of these pairs of quantities; due to the large volume of data, generally these modest changes in fit order do not have a large effect on the resulting value of R<sup>2</sup>. Supplementary figures graphically depict the relationships between these quantities.

| Property 1                                 | Property 2                                                  | Overall<br>R <sup>2</sup> | 3-bead<br>R <sup>2</sup> | 4-bead<br>R <sup>2</sup> | 6-bead<br>R <sup>2</sup> |
|--------------------------------------------|-------------------------------------------------------------|---------------------------|--------------------------|--------------------------|--------------------------|
| T <sub>g</sub> , glass<br>transition temp. | m, Kinetic fragilty                                         | 0.265                     | 0.075                    | 0.113                    | 0.109                    |
| Tg                                         | κ <sup>2</sup> , Relative shape anisotropy                  | 0.162                     | 0.241                    | 0.047                    | 0.020                    |
| Tg                                         | E <sub>m,pair</sub> , slope of pair energy vs. temp         | 0.966                     | 0.767                    | 0.662                    | 0.582                    |
| Tg                                         | E <sub>b,pair</sub> , intercept of pair energy vs. temp     | 0.972                     | 0.705                    | 0.526                    | 0.499                    |
| Tg                                         | $\rho_m$ , slope of density vs. temp                        | 0.168                     | 0.769                    | 0.656                    | 0.497                    |
| Tg                                         | $\rho_b$ , intercept of density vs. temp                    | 0.409                     | 0.837                    | 0.447                    | 0.566                    |
| Tg                                         | E <sub>pair,Tg</sub> , extrp. pair energy at T <sub>g</sub> | 0.901                     | 0.241                    | 0.126                    | 0.073                    |
| Tg                                         | $\rho_{Tg}$ , extrp. density at $T_g$                       | 0.899                     | 0.669                    | 0.177                    | 0.182                    |
| Tg                                         | E <sub>a</sub> , High-temp activation energy                | 0.914                     | 0.900                    | 0.240                    | 0.513                    |
| Tg                                         | -log(τ <sub>0</sub> ), high-temp relaxation time            | 0.897                     | 0.734                    | 0.191                    | 0.599                    |
| m                                          | κ <sup>2</sup>                                              | 0.772                     | 0.444                    | 0.748                    | 0.736                    |
| m                                          | E <sub>m,pair</sub>                                         | 0.335                     | 0.078                    | 0.062                    | 0.132                    |
| m                                          | E <sub>b,pair</sub>                                         | 0.325                     | 0.091                    | 0.050                    | 0.252                    |
| m                                          | ρ <sub>m</sub>                                              | 0.055                     | 0.058                    | 0.049                    | 0.069                    |
| m                                          | ρ <sub>b</sub>                                              | 0.115                     | 0.084                    | 0.050                    | 0.135                    |
| m                                          | Epair,Tg                                                    | 0.284                     | 0.629                    | 0.315                    | 0.093                    |
| m                                          | ρpair,Tg                                                    | 0.393                     | 0.111                    | 0.268                    | 0.346                    |
| m                                          | Ea                                                          | 0.201                     | 0.000                    | 0.429                    | 0.183                    |
| m                                          | -log(τ <sub>0</sub> )                                       | 0.413                     | 0.330                    | 0.441                    | 0.187                    |
| κ <sup>2</sup>                             | E <sub>m,pair</sub>                                         | 0.205                     | 0.124                    | 0.033                    | 0.022                    |
| κ <sup>2</sup>                             | E <sub>b,pair</sub>                                         | 0.218                     | 0.650                    | 0.170                    | 0.079                    |
| κ <sup>2</sup>                             | ρ <sub>m</sub>                                              | 0.011                     | 0.152                    | 0.022                    | 0.030                    |
| κ <sup>2</sup>                             | ρ <sub>b</sub>                                              | 0.033                     | 0.235                    | 0.187                    | 0.149                    |
| κ <sup>2</sup>                             | E <sub>pair,Tg</sub>                                        | 0.227                     | 0.521                    | 0.218                    | 0.152                    |
| К <sup>2</sup>                             | ρ <sub>pair,Tg</sub>                                        | 0.286                     | 0.167                    | 0.140                    | 0.254                    |
| к <sup>2</sup>                             | Ea                                                          | 0.074                     | 0.594                    | 0.569                    | 0.249                    |
| к <sup>2</sup>                             | -log(τ <sub>0</sub> )                                       | 0.292                     | 0.275                    | 0.435                    | 0.093                    |

Supplementary Table 3 Correlation between various descriptors associated with glass formation behavior represented by a second order polynomial fit

| Descriptor 1           | Descriptor 2            | Overall R <sup>2</sup> | 3-bead R <sup>2</sup> | 4-bead R <sup>2</sup> | 6-bead R <sup>2</sup> |
|------------------------|-------------------------|------------------------|-----------------------|-----------------------|-----------------------|
| E <sub>m,pair</sub>    | E <sub>b,pair</sub>     | 0.964                  | 0.483                 | 0.525                 | 0.471                 |
| E <sub>m,pair</sub>    | ρ <sub>m</sub>          | 0.326                  | 0.987                 | 0.970                 | 0.884                 |
| E <sub>m,pair</sub>    | ρ <sub>b</sub>          | 0.403                  | 0.638                 | 0.399                 | 0.469                 |
| E <sub>m,pair</sub>    | E <sub>pair,Tg</sub>    | 0.891                  | 0.316                 | 0.126                 | 0.104                 |
| E <sub>m,pair</sub>    | $ ho_{\text{pair,Tg}}$  | 0.912                  | 0.580                 | 0.274                 | 0.303                 |
| E <sub>m,pair</sub>    | Ea                      | 0.896                  | 0.476                 | 0.352                 | 0.414                 |
| E <sub>m,pair</sub>    | -log(τ <sub>0</sub> )   | 0.899                  | 0.664                 | 0.168                 | 0.598                 |
| E <sub>b,pair</sub>    | ρ <sub>m</sub>          | 0.093                  | 0.532                 | 0.408                 | 0.266                 |
| E <sub>b,pair</sub>    | ρ <sub>b</sub>          | 0.298                  | 0.900                 | 0.820                 | 0.411                 |
| E <sub>b,pair</sub>    | E <sub>pair,Tg</sub>    | 0.964                  | 0.614                 | 0.130                 | 0.241                 |
| E <sub>b,pair</sub>    | $ ho_{\text{pair,Tg}}$  | 0.879                  | 0.423                 | 0.037                 | 0.037                 |
| E <sub>b,pair</sub>    | Ea                      | 0.880                  | 0.892                 | 0.466                 | 0.317                 |
| E <sub>b,pair</sub>    | $-\log(\tau_0)$         | 0.856                  | 0.805                 | 0.021                 | 0.472                 |
| ρ <sub>m</sub>         | ρ <sub>b</sub>          | 0.497                  | 0.691                 | 0.327                 | 0.569                 |
| ρ <sub>m</sub>         | E <sub>pair,Tg</sub>    | 0.053                  | 0.355                 | 0.173                 | 0.218                 |
| ρ <sub>m</sub>         | $ ho_{\text{pair}, Tg}$ | 0.096                  | 0.657                 | 0.309                 | 0.207                 |
| ρ <sub>m</sub>         | Ea                      | 0.166                  | 0.596                 | 0.345                 | 0.487                 |
| ρ <sub>m</sub>         | -log(τ <sub>0</sub> )   | 0.206                  | 0.761                 | 0.217                 | 0.461                 |
| ρ <sub>b</sub>         | E <sub>pair,Tg</sub>    | 0.160                  | 0.348                 | 0.127                 | 0.042                 |
| ρ <sub>b</sub>         | $ ho_{\text{pair,Tg}}$  | 0.119                  | 0.574                 | 0.152                 | 0.028                 |
| ρ <sub>b</sub>         | Ea                      | 0.456                  | 0.861                 | 0.419                 | 0.656                 |
| ρ <sub>b</sub>         | -log(τ <sub>0</sub> )   | 0.333                  | 0.715                 | 0.034                 | 0.296                 |
| E <sub>pair,Tg</sub>   | $ ho_{\text{pair,Tg}}$  | 0.803                  | 0.415                 | 0.760                 | 0.416                 |
| E <sub>pair,Tg</sub>   | Ea                      | 0.777                  | 0.107                 | 0.043                 | 0.057                 |
| E <sub>pair,Tg</sub>   | $-\log(\tau_0)$         | 0.705                  | 0.569                 | 0.214                 | 0.096                 |
| $ ho_{\text{pair,Tg}}$ | Ea                      | 0.752                  | 0.691                 | 0.130                 | 0.021                 |
| $ ho_{\text{pair,Tg}}$ | $-\log(\tau_0)$         | 0.824                  | 0.783                 | 0.252                 | 0.280                 |
| Ea                     | -log(τ <sub>0</sub> )   | 0.846                  | 0.752                 | 0.004                 | 0.447                 |



Supplementary Figure 2: Plots comparing various glass formation behaviour descriptors against  $T_g$ . a) Dependence of pair energy at extrapolated  $T_g$  on  $T_g$ . b) Dependence of system density at extrapolated  $T_g$  on  $T_g$ . c) Dependence of Arrhenius activation energy on  $T_g$ . d) Dependence of Arrhenius pre-factor on  $T_g$ .



Supplementary Figure 3: Plots comparing various glass formation behaviour descriptors against m. a) Dependence of pair energy at extrapolated  $T_g$  on m. b) Dependence of system density at extrapolated  $T_g$  on m. c) Dependence of Arrhenius activation energy on m. d) Dependence of Arrhenius pre-factor on m.



Supplementary Figure 4: Plots comparing various glass formation behaviour descriptors against  $\kappa^2$ . a) Dependence of slope of pair energy vs. temperature on  $\kappa^2$ . b) Dependence of intercept of pair energy vs. temperature on  $\kappa^2$ . c) Dependence of slope of density vs. temperature on  $\kappa^2$ . d) Dependence of intercept of density vs. temperature on  $\kappa^2$ .



Supplementary Figure 5: Plots comparing various glass formation behaviour descriptors against  $\kappa^2$ . a) Dependence of pair energy at extrapolated  $T_g$  on  $\kappa^2$ . b) Dependence of system density at extrapolated  $T_g$  on  $\kappa^2$ . c) Dependence of Arrhenius activation energy on  $\kappa^2$ . d) Dependence of Arrhenius pre-factor on  $\kappa^2$ .



Supplementary Figure 6: Plots comparing various glass formation behaviour descriptors against  $E_m$ , slope of pair energy vs. temperature. a) Dependence of intercept of pair energy vs. temperature on  $E_m$ . b) Dependence of slope of density vs. temperature on  $E_m$ . c) Dependence of intercept of density vs. temperature on  $E_m$ . d) Dependence of pair energy at extrapolated  $T_g$  on  $E_m$ .



Supplementary Figure 7: Plots comparing various glass formation behaviour descriptors  $E_m$ , slope of pair energy vs. temperature. a) Dependence of system density at extrapolated  $T_g$  on  $E_m$ . b) Dependence of Arrhenius activation energy on  $E_m$ . c) Dependence of Arrhenius pre-factor on  $E_m$ .



Supplementary Figure 8: Plots comparing various glass formation behaviour descriptors  $E_b$ , intercept of pair energy vs. temperature. a) Dependence of slope of density vs. temperature on  $E_b$ . b) Dependence of intercept of density vs. temperature on  $E_b$ . c) Dependence of pair energy at extrapolated  $T_g$  on  $E_b$ . d) Dependence of density at extrapolated  $T_g$  on  $E_b$ .



Supplementary Figure 9: Plots comparing various glass formation behaviour descriptors *E*<sub>b</sub>, intercept of pair energy vs. temperature. a) Dependence of Arrhenius activation energy on *E*<sub>b</sub>. b) Dependence of Arrhenius pre-factor on *E*<sub>b</sub>.



Supplementary Figure 10: Plots comparing various glass formation behaviour descriptors  $\rho_m$ , slope of density vs. temperature. a) Dependence of intercept of density vs. temperature on  $\rho_m$ . b) Dependence of pair energy at extrapolated  $T_g$  on  $\rho_m$ . c) Dependence of density at extrapolated  $T_g$  on  $\rho_m$ . d) Dependence of Arrhenius activation energy on  $\rho_m$ . e) Dependence of Arrhenius pre-factor on  $\rho_m$ .



Supplementary Figure 11: a) Dependence of pair energy at extrapolated  $T_g$  on  $\rho_b$ . b) Dependence of density at extrapolated  $T_g$  on  $\rho_b$ . c) Dependence of Arrhenius activation energy on  $\rho_b$ . d) Dependence of Arrhenius pre-factor on  $\rho_b$ .



Supplementary Figure 12: a) Dependence of density at extrapolated  $T_g$  on  $E_{Tg}$ . b) Dependence of Arrhenius activation energy on  $E_{Tg}$ . c) Dependence of Arrhenius pre-factor on  $E_{Tg}$ .



Supplementary Figure 13: a) Dependence of Arrhenius activation energy on  $\rho_{Tg}$ . b) Dependence of Arrhenius pre-factor on  $\rho_{Tg}$ .



Supplementary Figure 14: a) Dependence of Arrhenius pre-factor on  $E_a$ .