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Free energy density of self-assembling cluster solutions with loops
included
The most general free energy density of self-assembling cluster (either branched or linear) solutions must
distinguish between the mesoscale and micro-scale degrees of freedom that enter into the assembly free
energy. The mesoscale degrees of freedom are the size (number of molecules) of the assembly and the
number of bonds that connect these molecules. The number of bonds determines the total cohesive energy of
the assembly. Along with the cluster size, the total number of bonds and the branching geometry determine
the number of combination to assemble such cluster, which sets the conformational entropy of such self-
assembling chains and networks. Motivated by previous theoretical treatments of branched polymers [1, 2],
we use in this paper, instead of the number of bonds within the assembly, an equivalent measure of the
number of loops (closed paths within the cluster network), denoted by `. A tree (loop-less) cluster can be
formed by successive binding of molecules, each with a single bond, to an existing tree cluster. Therefore,
the total number of bonds in such assembly, n− 1, is the size n of the assembly, minus one that serves as a
root of the cluster. The number of bonds nb in a cluster that is not necessarily loop-less, is the sum of the
number of bonds in a tree cluster, n − 1, and ` bonds, each required to form one loop (since a loop of m
molecules consists of m− 1 “loop-less” bonds and one bond required to close the loop), so that nb = n− 1 + `
[3].

As explained above, assemblies with different n and ` have different intrinsic free energies and are distin-
guished by our theory. We therefore denote by φn,` the volume fraction of molecules comprising assemblies
of size n that have ` loops. The bonds of these assemblies contribute an energy Eb (n+ `− 1) to the intrinsic
free energy of each cluster, where Eb > 0 is the binding energy due to the specific, relatively strong, interac-
tions that lead to oligomerization (e.g. salt bridges, hydrogen bonds). The contribution of the conformational
entropy of the assemblies to their intrinsic free energy is the thermal energy kBT multiplied by the logarithm
of the number of possible conformations of such assemblies with n monomers and ` loops, which we denote
by Ωn,`. We supplement the intrinsic free energy of the assemblies by a phenomenological contribution due
to loops: ε · `, where ε accounts for the free energy cost of forming one loop, that reduces the binding free
energy gain associated with the additional bond required to close the loop. This free energy cost ε may
have an entropic contribution due to conformational constraints imposed on the cluster by the formation of
a loop, and an energetic contribution due to intra-cluster bending induced by the loops. The contribution of
the intrinsic free energy of the ∼ φn,`/n assemblies, consisting of n molecules and ` loops, to the free energy
density of the entire solution is the sum of the energy and entropy of each assembly, multiplied by the con-
centration of these assemblies. This contribution of the intrinsic free energies is supplemented, in the Flory
Huggins (FH) approximation, by a term that accounts for the mixing of the assemblies of various sizes and

loops and the solvent molecules, kBT

(∑
n,`

(φn,`/n) log (φn,`/n) + (1− φ) log (1− φ)

)
, and for the relatively

weaker, non-specific interactions (e.g. dispersive interactions) kBTχφ (1− φ) /2 [4]; where φ ≡
∑
n,`

φn,` is the

local volume fraction of all molecules, and χ > 0 is the non-specific, attractive interactions, parametrized
by the Flory parameter χ. We note that in the FH approximation, both the term (1− φ) log (1− φ) as
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well as the non-specific interactions do not distinguish between self-assembled clusters and disassembled, free
molecules. Taking all contributions into account, the dimensionless free energy density f (rescaled by kBT )
of a solution of self-assembling clusters is

f ≈
∑
n,`

φn,`
n

log

(
φn,`
n

)
+ (1− φ) log (1− φ) +

χ

2
φ (1− φ) (1)

−
∑
n,`

φn,`
n

(
Eb
kBT

(n+ `− 1) + log (Ωn,`)−
ε`

kBT

)
(2)

It is important to note that Eq. 1 describes both solutions of linear chains (for which ` is either 0 or 1 for
open or closed chains, respectively), and solutions of branched clusters (for which ` may have many possible
values).

In equilibrium, the molecules in each assembly species (characterized by n and `) have the same chemical
potential λ/kBT ≡ −∂f/∂φn,`, where f is the free energy of Eq. 1 and the minus sign is chosen for convenience
of notation. We use this condition to find the equilibrium distribution of molecules that is set by the values
of φn,`, which yields:

∂f

∂φn,`
≈ 1

n
log

(
φn,`
n

)
+

1

n
− 1

n

(
Eb
kBT

(n− 1 + `) + log (Ωn,`)−
ε`

kBT

)
= −λ⇒

φn,` = nΩn,` exp

(
−n (λ− Eb)

kBT
− εB (T ) + `

(
Eb − ε
kBT

))
(3)

where εB (T ) ≡ 1 + Eb/kBT is the constant part of the free energy cost, rescaled by kBT , that is associated
with the formation of a cluster from a molecule reservoir, and is independent of the cluster size or its
loop content. The contribution of unity to εB accounts for the reduction in the mixing entropy of existing
clusters of the same n and ` due to the incorporation of an additional assembly, and can be derived from the
constant, positive part of the mixing free energy derivative with respect to its concentration cn,` ≡ φn,`/n,
d (kBTcn,` log (cn,`)) /dcn,` = kBT log (cn,`) + kBT . The term kBT log (cn,`) (which has a negative value),
is the entropic contribution of the additional cluster, which depends on the concentration of clusters of the
same species. The term Eb/kBT in εB emerges from the negative term in Eb (n+ `− 1), the intrinsic binding
energy of a cluster, because the number of bonds in a tree-like cluster is smaller than its size.

The chemical potential λ that appears in Eq. 3 is set by conservation of molecules
∑
n,`

φn,` = φ:

φ = exp (−εB)
∑
n,`

nΩn,` exp

(
−n (λ− Eb)

kBT
+ `

(
Eb − ε
kBT

))
(4)

We substitute Eq. 3 into the free energy density of Eq. 1 to find a simpler form for the minimum of the
free energy density, which results in:

f = −
∑
n,`

φn,`
n

+ (1− φ) log (1− φ)− φλ (φ)

kBT
+
χ

2
φ (1− φ) (5)

Experimentally, the number of loops in a cluster is a quantity that changes dynamically at very short
timescales and is difficult to measure. We therefore average (take a statistical mechanical trace) over the
number of loops for each cluster size and define φn ≡

∑̀
≥0

φn,`, the total volume fraction of molecules that

comprise clusters of size n (summed over all the loop configurations). This allows us to rewrite Eq. 5 in
terms of φn:

f = −
∑
n

φn
n

+ (1− φ) log (1− φ)− φλ (φ)

kBT
+
χ

2
φ (1− φ) (6)
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Similarly, to eliminate the explicit dependence of the number of possible conformations of a cluster on the
number of loops, we define Ωn as a sum over different `’s of Ωn,` multiplied by the appropriate Boltzmann
factors for the free energy change due to loop formation:

Ωn ≡
∑
`

Ωn,`

(
exp

(
Eb − ε
kBT

))`
(7)

Since we are only interested in the number of assemblies of a given size (and not their loop content),
we average over the possible loop configurations. With the definition of Ωn and φn, Eqs. 3 and 4 can be
rewritten in forms that do not explicitly depend on `:

φn = exp (−εB)nΩn exp

(
−n (λ− Eb)

kBT

)
(8)

φ = exp (−εB)

∞∑
n=1

nΩn exp

(
−n (λ− Eb)

kBT

)
(9)

We use the simpler form of the free energy of Eq. 6 to investigate the phase separation properties of the
self-assembling, cluster solutions, driven by the non-specific attractions. The critical point of the liquid-liquid
phase separation is determined by the second and third derivatives of the free energy density f with respect
to the volume fraction φ [5], which we calculate below:

∂f

∂φ
= − log (1− φ)− 1− λ (φ)

kBT
− Eb
kBT

+
χ

2
(1− 2φ) (10)

∂2f

∂φ2
=

1

1− φ
− ∂

∂φ

λ (φ)

kBT
− χ (11)

∂3f

∂φ3
=

1

(1− φ)
2 −

∂2

∂φ2

λ (φ)

kBT
(12)

where we use Eqs. 8 and 9 in the first differentiation. The nature of the self-assembling clusters (linear or
branched), and the dimensionality d determine the values of Ωn which then set λ (φ) according to Eq. 9.
This then sets the cluster size distribution, given by Eq. 8, as well as critical concentration and temperature
for phase separation, given by equating Eqs. 11 and 12 to zero.

General treatment of self-assembling cluster solutions with different
geometries and dimensions
In the section above, we have formulated the free energy density of a solution of self-assembling, linear
or branched, cluster solution, and its dependence on Ωn, the number of possible conformation of a cluster
consisting n molecules. In lattice models, these conformations are respectively the number of self-avoiding
walks or connected clusters (“lattice animals” [6]), for linear and branched assemblies. Previous numerical
studies and formal field theories show that in the asymptotic limit of large assembly size n� 1, the scalings
of the self-avoiding walks and lattice animals are both of the form Ωn ∼ Aγnnα [4, 1]. A > 0 and γ > 1 are
non-universal constants that depends on the choice of the lattice and valence of the molecules. In contrast,
α is a universal exponent that depends only on dimensionality and whether the cluster is linear (α ≈ 1/6 for
d = 3 [4]) or branched (α = −3/2 for d = 3 [7]). In this section, we investigate the size distribution of the
self-assembling clusters, as well as the liquid-liquid and sol-gel phase transitions of the cluster solutions as a
function of the parameter α. First, we substitute the asymptotic form Ωn ≈ Aγnnα in Eq. 9, which yields:

φ = A exp (−εB)Li−(α+1) (exp (−δ)) (13)

where δ ≡ (λ− Eb) /kBT− log (γ) is a dimensionless chemical potential, and Li−(α+1) (x) =
∞∑
n=1

nα+1xn is the

polylogarithm function. Using the asymptotic form of Ωn for n � 1, we implicitly assume that the average
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size of the assemblies is large, which is expected to be the case for binding energies that are much larger
than the temperature so that φ exp (εB) � 1. Eq. 13 implies that for φ exp (εB) � 1, δ must be small in

order for the sum
∞∑
n=1

nα+1 exp (−nδ), that is proportional to φ exp (εB), to be large. We therefore expand

Li−(α+1) (exp (−δ)) to leading order in δ for δ � 1, which leads to:

Li−(α+1) (exp (−δ)) ≈

 Γ (α+ 2) δ−(α+2) −2 < α
− log (δ) −2 = α
ζ (−1− α) −2 > α

(14)

where Γ(x) and ζ(x) respectively are the Gamma function and the Riemann zeta function. Surprisingly,
the leading term of the expansion for −2 > α, for small δ, is independent of δ. This implies that the right
hand side of Eq. 13 has an upper bound of φ∗ ≈ A exp (−εB) ζ (−1− α). For volume fraction of molecules
φ larger than φ∗, there is no value of δ that satisfies Eq. 13, so that there is no equilibrium distribution of
finite, branched clusters that minimizes the free energy. We discuss this case in detail below in the subsection
“Gelation transition: a phase with an infinite cluster”, and show that the transition at φ = φ∗ is a sol-gel
transition. For the moment, we limit our discussion to the case α ≥ −2, which do not exhibit gelation
transitions in the dilute limit of φ → 0, even for φ exp(εB) � 1. We substitute the expansion described by
Eq. 14 into Eq. 13, resulting in φ(δ), which we invert to obtain δ(φ) and hence the chemical potential λ as
functions of the molecule volume fraction φ:

φ exp (εB) =

{
AΓ (α+ 2) δ−(α+2) −2 < α
−A log (δ) −2 = α

(15)

δ =
λ− Eb
kBT

− log (γ) =


(
φ exp(εB)
AΓ(α+2)

)− 1
α+2 −2 < α

exp
(
−φ exp(εB)

A

)
−2 = α

⇒ (16)

λ =

 Eb + kBT log (γ) + kBT
(
φ exp(εB)
AΓ(α+2)

)− 1
α+2 −2 < α

Eb + kBT log (γ) + kBT exp
(
−φ exp(εB)

A

)
−2 = α

(17)

We are interested in the average assembly size N̄ , which can be simply calculated by dividing the total
concentration of molecules φ by the total concentration of assembliesNa ≡

∑
n
φn/n, calculated by substitution

of Ωn = AγNnα into Eq. 8 followed by division by n and summation:

∞∑
n=1

φn
n

= A exp (−εB)

∞∑
n=1

nα exp

(
−n
(
λ− Eb
kBT

− log (γ)

))
(18)

= A exp (−εB)Li−α (exp (−δ)) (19)

We use the expansion of the polylogarithm similar to Eq. 14, but for Liα, along with Eq. 16 for δ(φ) to
express N̄ = φ/Na(φ) as a function of φ. We then substitute Eq. 15 to express N̄ as a function of δ, which
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we invert to obtain δ(N̄):

∞∑
n=1

φn
n

=

 A exp (−εB) Γ (α+ 1) δ−(α+1) −1 < α
−A exp (−εB) log (δ) −1 = α
A exp (−εB) ζ (−α) −1 > α ≥ −2

⇒ (20)

N̄(φ) =
φ∑

n

φn
n

=


φ exp(εB)
AΓ(α+1) δ

(α+1) = (α+ 1)
(
AΓ(α+2)
φ exp(εB)

)− 1
α+2 −1 < α

−φ exp(εB)
A log(δ) = φ exp(εB)

A

(
log
(
φ exp(εB)

A

))−1

−1 = α
φ exp(εB)
Aζ(−α) −1 > α ≥ −2

⇒ (21)

N̄(δ) =


(α+ 1) δ−1 −1 < α
− (δ log (δ)) −1 = α

Γ(α+2)
ζ(−α) δ

−(α+2) −1 > α > −2

− log(δ)
ζ(2) α = −2

⇒ (22)

δ(N̄) =


(α+ 1) N̄−1 −1 < α

1

N̄ log(N̄)
−1 = α

1

N̄
1

α+2

(
Γ(α+2)
ζ(−α)

) 1
α+2 −1 > α > −2

exp
(
−ζ (2) N̄

)
α = −2

(23)

We find that indeed, for φ exp (εB) � 1, which is satisfied for large enough binding energy Eb, N̄ � 1,
so that the use of the asymptotic value of Ωn is valid, which indicates that our theory is self-consistent.
The relation between N̄ and φ exp (εB) described by Eq. 21 is used together with the asymptotic form
Ωn ≈ Aγnnα, and the expressions of δ described by Eq. 16, to write the volume fractions φn (cluster size
distribution) of Eq. 8 as functions of n and N̄ :

φn ≈



A exp (−εB)nα+1 exp
(
− (α+ 1) n

N̄

)
−1 < α

A exp (−εB) exp

(
− n

N̄ log(N̄)

)
−1 = α

A exp (−εB)nα+1 exp

(
− n

N̄
1

α+2

(
Γ(α+2)
ζ(−α)

) 1
α+2

)
−1 > α > −2

A exp (−εB)n−1 exp
(
−n exp

(
−π

2

6 N̄
))

α = −2

(24)

Eq. 24 shows, that the general asymptotic form of the distribution φn(N̄) as a function of the average
cluster size N̄ , is a power-law in n multiplied by exp

(
−n/gα

(
N̄
))

, where gα(N̄) is a function of N̄ , that
is determined by α. For α > −1 (linear chains), gα(N̄) ∼ N̄ , so that for n ∼ N̄ , the distribution of sizes is
exponentially decreasing. For −2 < α < −1, gα(N̄) ∼ N̄1/(α+2) � N̄ , so that the distribution for n ∼ N̄ is
effectively a decreasing power-law (unaffected by the exponential cut off). For α = −2, gα(N̄) ∼ exp(π2N̄/6)
so that the distribution becomes essentially a power-law. For values of α smaller than −2, the solution for
the asymptotic case of large binding energy is unstable and undergoes a sol-gel transition, as explained in
the section “Gelation transition: a phase with an infinite cluster” below.

To predict the phase separation properties of these general solution, we substitute the expressions of Eq.
17 into Eqs. 11 and 12, which yields the second and third derivative of the free energy density. We then use
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21 to describe the derivatives as functions of N̄ and calculate the critical point of phase separation.

∂2f

∂φ2
=

 1
1−φ + 1

α+2

(
exp(εB)
AΓ(α+2)

)− 1
α+2

φ−
1

α+2−1 − χ −2 < α

1
1−φ + exp(εB)

A exp
(
−φ exp(εB)

A

)
− χ −2 = α

(25)

=



1
1−φ + α+1

α+2
1
N̄φ
− χ −1 < α

1
1−φ + 1

φN̄ log N̄
− χ −1 = α

1
1−φ + 1

α+2

(
Γ(α+2)
ζ(−α)

) 1
α+2 1

N̄
1

α+2 φ
− χ −1 > α > −2

1
1−φ + 1

φζ (2) N̄ exp
(
−ζ (2) N̄

)
− χ α = −2

(26)

∂3f

∂φ3
=


1

(1−φ)2
−
(

1
α+2 + 1

)
1

α+2

(
exp(εB)
AΓ(α+2)

)− 1
α+2

φ−
1

α+2−2 −2 < α

1
(1−φ)2

−
(

exp(εB)
A

)2

exp
(
−φ exp(εB)

A

)
−2 = α

(27)

=



1
(1−φ)2

− (α+1)(α+3)

(α+2)2
1

N̄φ2 −1 < α
1

(1−φ)2
− 2

φ2N̄ log N̄
−1 = α

1
(1−φ)2

− α+3
(α+2)2

(
Γ(α+2)
ζ(−α)

) 1
α+2 1

N̄
1

α+2 φ2
−1 > α > −2

1
(1−φ)2

− 1
φ2 ζ

2 (2) N̄2 exp
(
−ζ (2) N̄

)
α = −2

(28)

We find the critical point as a solution to the system of equations formed by equating the second and
third derivatives to zero [5]:

1. α > −1:

kBTc
J

= 1− 1√
N̄c

(2α+ 5)

(α+ 2)

√
(α+ 1)

(α+ 3)
(29)

φc ≈
√

(α+ 1) (α+ 3)

(α+ 2)
√
N̄c

(30)

N̄c = (α+ 1)
2(α+2)
2α+5

(
AΓ (α+ 2)

2√
(α+ 1) (α+ 3)

)− 2
2α+5

exp (εB)
2

2α+5 (31)

2. α = −1:

1

χc
= 1− 3√

2N̄c log N̄c
(32)

φc ≈

√
2

N̄c log N̄c
(33)

Nc =
φ exp (εB)

A

(
log

(
φ exp (εB)

A

))−1

(34)

3. −1 > α > −2:

1

χc
= 1− 2α+ 5

(α+ 2)
√
α+ 3

(
Γ (α+ 2)

ζ (−α)

) 1
2(α+2) 1

N̄
1

2(α+2)
c

(35)

φc ≈
√
α+ 3

α+ 2

(
Γ (α+ 2)

ζ (−α)

) 1
2(α+2) 1

N̄
1

2(α+2)
c

(36)
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4. α = −2:

1

χc
≈ 1− π2

6
N̄c exp

(
−π

2

12
N̄c

)
(37)

φc ≈ π2

6
N̄c exp

(
−π

2

12
N̄c

)
(38)

As expected, these results show that self-assembly promotes phase separation for both branched and linear
assemblies. This can be explained by the reduction of mixing entropy, due to self-assembly, in favor of the free
energy gain due to binding enthalpy and conformational entropy of the clusters. Mixing entropy tends to mix
the solution and prevents phase separation. Therefore, the decrease of the mixing entropy by self-assembly is
expected to promote phase separation. However, the extent to which self-assembly promotes phase separation,
quantified by the equations for φc above, depends on the parameter α, thus on the branched vs. linear nature
of the assemblies. Phase separation of linear, self-assembling cluster solutions (α > −1), agrees with the
predictions of FH theory for fixed-size polymer disperses ofM -sized polymers (with φc ∼M−

1
2 for FH), with

M that scales as the average chain length N̄ in the self-assembled system; this differs from the predictions
of Ref. [8] due to reasons explained in the section below. In contrast, phase separation of branched, self-
assembling cluster solutions are also described by FH theory, but where M scales as N̄1/(2+α), rather than
N̄ . Since N̄1/(2+α) � N̄ , the critical volume fraction of branched, self-assembling cluster solutions is much
lower than that of linear, self-assembling chain solutions even if the average size of the dispersed clusters is
the same. This is consistent with scaling arguments, since the only scale of the size distribution φn, described
by Eq. 24, is N̄ in the linear case, and N̄1/(2+α) in the branched case.

Comparison of our results and those of Ref. [8]
In their paper, Dudowicz, Freed, and Douglas [8] investigated, among other problems, the equilibrium length
distribution and phase separation properties of self-assembling, linear chain solutions. They modeled the
chains as either flexible, Gaussian chains or as rigid rods (both have the same value α = 0), and found
that the critical volume fraction φc scales with the average chains length as φc ∼ N̄

− 2
5

c (Eq. 34 in their
paper). This result is different than our prediction of φc ∼ N̄

− 1
2

c for all values of α > −1. Furthermore, the
authors of [8] relate φc to the binding energy and find that φc ∼ exp (εb,c)

1
5 (Eq. A11 in their paper), where

εb,c ≡ Eb/kBTc.
To compare their prediction with ours, we substitute φ = φc and T = Tc in Eq. 21 for α = 0, which gives

N̄c =
√
φc exp (εBc) /2A. Along with our prediction φc ∼ N̄

− 1
2

c , we use the relation N̄c =
√
φc exp (εBc) /2A

to solve for φc as a function of εB . This lead to the relation φc ∼ (exp (εBc))
− 1

5 , which surprisingly agrees
with the prediction of [8].

We have therefore carefully reviewed both their calculations as well as ours to find the origin of the
disagreement between the different predictions for the scaling exponents of φc with N̄ . In their paper, Eq.
34 states the relation φc ∼ N̄

− 2
5

c is derived by finding the scaling of Nc with exp (εb,c) and re-expressing
φc ∼ (exp (εb,c))

− 1
5 in terms of Nc. Eq. A8 of their appendix show that for εb � 1, N ≈ (φ/C)

1
2 , where they

show that the value of C at the critical point scales as Ccr ∼ exp (−εb,c), which implies that N̄c =
√
φc/Ccr ∼

exp (εb,c)
2
5 which then, when substituted into φc ∼ (exp (εb,c))

− 1
5 , leads to the relation φc ∼ N̄

− 1
2

c that agrees
with our prediction. We speculate that their derivation of the reported scaling of φc ∼ N̄

− 2
5

c contained
an error, by omitting the contribution of φc to the scaling of

√
φc/Ccr with exp (εb,c). This led to their

scaling Nc ∼ exp (εb,c)
1
2 instead of Nc = exp (εb,c)

2
5 which, when respectively substituted into the relation

φc ∼ (exp (εb,c))
− 1

5 , leads to the scaling relation φc ∼ N̄
− 2

5
c , which was reported in their paper, instead of

φc ∼ N̄
− 1

2
c , which we predict.
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Gelation transition: a phase with an infinite cluster
To investigate the thermodynamics of this sol-gel transition in d > 4, we generalize the free energy in
Eq. 1 in the main text, which considers only a sol phase, to also include a gel phase. The calculations
are similar to those done in section “model and results” in the main text but now include the free energy
contribution of the gel phase whose volume fraction is denoted as φg. The intrinsic free energy density of
the infinite cluster can be taken as the n→∞ limit of the intrinsic free energy density of an n-sized cluster,
φn

(
(n− 1) Eb

kBT
+ log (Ωn)

)
/n, which is φg (Eb/kBT + log (γ)). We thus supplement Eq. 1 in the main text

with the gel free energy density so that f now account for both the gel and the sol:

f ≈
∑
n

φn
n

log

(
φn
n

)
+(1− φ) log (1− φ)+

χ

2
φ (1− φ)−

∑
n

φn
n

(
(n− 1)

Eb
kBT

+ log (Ωn)

)
−(φ− φs)

(
Eb
kBT

+ log (γ)

)
(39)

where φs is the volume fraction of the sol phase and φ is the total volume fraction of molecules; since the
molecules are either in the sol or gel phases, φ−φs is the volume fraction of the gel phase φg. The distribution
of clusters within the sol is obtained by minimization of Eq. 39, which recapitulates the distribution φn ≈
A exp (−εB)nα+1 exp (−nδ), this time with δ determined by the condition that

∑
φn equals to the volume

fraction of molecules in the sol phase, φs, instead of the overall volume fraction of multivalent molecules, φ.
Substitution of this expression for φn in Eq. 39, results in a free energy density that depends on the volume
fraction of the sol phase φs and the total volume fraction of molecules φ, but not the distribution of clusters,
φn:

f ≈ − exp (−εB)
∑
n

Ωn
γn

exp (−nδ(φs))− φsδ(φs) + (1− φ) log (1− φ) +
χ

2
φ (1− φ)− φ

(
Eb
kBT

+ log (γ)

)
(40)

We determine the volume fraction of the sol phase φs as a function of the total volume fraction φ by
minimization of Eq. 40 with respect to φs. Differentiation of Eq. 40 with respect to φs simply gives
∂f/∂φs = −δ(φs). As indicated by Eq. 8 in the main text, δ(φs) = 0 for φs = φ∗ so that the free energy of
the sol-gel coexistence is minimized for φs = φ∗. However, φs is physically limited to the range 0 ≤ φs ≤ φ,
so that if φ < φ∗, φs is always less than the critical volume fraction φ∗ and the minimum of Eq. 40 is
achieved for φs = φ, i.e. there is only sol phase and not gel. Since the gel point, φs = φ∗ is the minimum of
the free energy of the sol, the system undergoes a sol-gel transition at a critical volume fraction φ∗ beyond
which the concentration of the sol phase remains constant as the total concentration of molecules is increased.
Substituting this solution into the free energy in Eq. 40, leads to the free energy as a function of φ alone:

f ≈


− exp (−εB)

∑
n

Ωn
γn exp (−nδ(φ))− φ

(
δ(φ) + Eb

kBT
+ log (γ)

)
+ (1− φ) log (1− φ) + χ

2φ (1− φ) φ < φ∗

− exp (−εB)
∑
n

Ωn
γn − φ

(
Eb
kBT

+ log (γ)
)

+ (1− φ) log (1− φ) + χ
2φ (1− φ) φ ≥ φ∗

(41)
where we used the fact that δ(φ∗) = 0.

In order to characterize the thermodynamic nature of the sol-gel transition, we investigate the disconti-
nuities at the gel point of the various derivatives of the free energy of Eq. 41 with respect to φ. The first
derivative yields:

df

dφ
≈

−δ(φ)−
(
Eb
kBT

+ log (γ)
)
− log (1− φ)− 1 + χ

2 (1− 2φ) φ < φ∗

−
(
Eb
kBT

+ log (γ)
)
− log (1− φ)− 1 + χ

2 (1− 2φ) φ ≥ φ∗

Since at the gel point δ(φ∗) = 0, the first derivative is continuous for φ = φ∗. Furthermore, since the
values of the first derivatives for φ < φ∗ and φ > φ∗ only differ by the function δ(φ), further derivatives of
the free energy will only be discontinuous when the corresponding derivatives of δ(φ) at φ = φ∗ are non-zero.
The expression for δ(φ) obtained in Eq. 8 in the main text indicates that it happens at order d1/ |α+ 2|e,
where dxe rounds x up to the first integer that is not smaller than it. Therefore, within our model the first
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discontinuity of the free energy derivatives of Eq. 41 is at order 1 + d1/ |α+ 2|e. This implies that for d ≥ 8
it is a third order phase transition, and appears to be even higher order for 4 < d < 8. This is because |α+ 2|
is a small number so that the power 1/ |α+ 2| can become very large.
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