Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Metal organic framework derived hierarchical copper cobalt sulfide nanosheet arrays for high-performance solid-state asymmetric supercapacitors

Ahmed Bahaa¹, Jayaraman Balamurugan¹, Nam Hoon Kim^{1*}, Joong Hee Lee^{1, 2*}

¹Advanced Materials Institute of BIN Convergence (BK plus Global) & Department of BIN Convergence Technology, Chonbuk National University ²Center for Carbon Composite Materials, Department of Polymer & Nano Science and Technology, Chonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea

> *Corresponding to Prof. Nam Hoon Kim (<u>nhk@chonbuk.ac.kr</u>) Prof. Joong Hee Lee (<u>jhl@chonbuk.ac.kr</u>)

Fig. S1 a, b 2D AFM image and its height profile of $CuCo_2S_4$ NS arrays, representing thickness around 2 nm.

Fig. S2 a –e SEM image of $CuCo_2S_4$ NS arrays and its corresponding SEM-EDS color mapping with respect to Cu-K, Co-K and S-K.

Fig. S3 SEM images of Cu_2CoS_4 and $CuCoS_4$ NS arrays.

Fig. S4 a and b. SEM images at different magnification of CuCo₂S₄ NS-U.

Fig. S5 XRD pattern of pure Ni foam.

Fig. S6 N_2 sorption isotherms of (a) Cu_2CoS_4 and (b) $CuCoS_4$ NS arrays (inset shows their corresponding pore size distribution curves).

Fig. S7 XPS survey spectrum of CuCo₂S₄ NS arrays.

Fig. S8 (a-e) CV curves of Cu_2CoS_4 NS, $CuCoS_4$ NS, $CuCo_2S_4$ NS-U, CuS, and CoS electrodes with different scan rates from 5to 30 mV s⁻¹.

Fig. S9 GCD curves of $CuCo_2S_4$ NS, Cu_2CoS_4 NS, $CuCoS_4$ NS, and $CuCo_2S_4$ NS-U electrodes at a current density of 3 mA cm⁻².

Fig. S10 Specific and areal capacity of CuS and CoS electrodes as a function of current density.

Fig. S11 Cyclic performance of Cu_2CoS_4 NS, and $CuCoS_4$ NS, and $CuCo_2S_4$ NS-U electrodes at a current density of 30 mA cm⁻².

Fig. S12 The first ten cycles of the fabricated $CuCo_2S_4$ NS arrays at a current density of 30 mA cm⁻².

Fig. S13 SEM images at different magnifications of $CuCo_2S_4$ NS arrays (after 10000 chargedischarge cycling test).

Fig. S14 Digital photograph of Fe₂O₃/NG hydrogel with a perfect cylinderical shape.

Fig. S15 SEM image of Fe₂O₃/NG aerogel.

Fig. S16 (a) XRD of the Fe_2O_3/NG aerogel, (b) XPS survey spectrum of Fe_2O_3/NG aerogel, High-reolution XPS spectra of (c) Fe 2p, (d) O 1s, (e) N 1s, and (f) C 1s for the Fe_2O_3/NG aerogel.

The high-resolution Fe 2p spectrum (Fig. S16c) displays the Fe $2p_{3/2}$ centered at ~710.9 eV, and Fe $2p_{1/2}$ centered at ~724.4 eV. In addition, the shake-up satellite peaks at ~717.3 eV, ~730.9 eV represent Fe (III) ions in the Fe₂O₃ (Fig. S16c).¹ The O peak around 532 eV can be split into three peaks at (529.9 eV) which present the oxygen in the Fe₂O₃, (532.2 eV), and (533.3 eV) represent the existence of oxygen in the metal hydroxide and carbon bond, respectively (Fig. S16d).² The N 1s peak can be fitted to three components based on different binding energies: for pyridinic (398.1 eV), graphitic (399.2 eV), and graphitic N have been shown to result in highly active electrocatalytic sites for SC applications. The XPS spectrum of C 1s corresponds to the following carbon bonds: 284.2 eV (C=C), 285 eV (C–N), 286.6 eV (C–O), and 288.2 eV (COOH) (Fig. S16f).³

Fig. S17 (a) N₂ sorption isotherms and (b) pore size distribution of the Fe₂O₃/NG aerogel.

Fig. S18 CV curves of Fe_2O_3/NG electrode at different scan rates from 10 to 80 mV s⁻¹.

Fig. S19 GCD curves of Fe₂O₃/NG electrode at different current densities from 1 to 50 mA cm^{-2} .

Fig. S20 Specific capacity of Fe₂O₃/NG electrode as a function of current density.

Fig. S21 Fe_2O_3/NG (negative) and $CuCo_2S_4$ (positive) electrodes measured at a scan rate of 30 mV s⁻¹ in three-electrode configurations.

Fig. S22 GCD of $CuCo_2S_4//Fe_2O_3/NG$ ASC device at different potential windows from 0.6 to 1.6 V.

Fig. S23 (a) specific capacities of the assembled devices as a function of current density, and (b) Energy vs power densities of the assembled $CuCo_2S_4 NS//Fe_2O_3/NG$ and $CuCo_2S_4 NS//AC$ ASC devices.

Fig. S24 First 10 cycles of the CuCo₂S₄ NS//Fe₂O₃/NG ASC device at a current density of 30 mA cm⁻².

Table S1 Elementa	l composition of Cu	uCo ₂ S ₄ NS and Fe	e ₂ O ₃ /NG estimate	ed from XPS and ICP-
OES.				

Samples	Cu [at. %]	Co [at. %]	Fe [at. %]	C [at. %]	S [at. %]	N [at. %]	O [at. %]
CuCo ₂ S ₄ NS	11.04	28.9	_		42.3	_	17.8
Fe ₂ O ₃ /NG	_	_	0.75	81.64	_	4.94	12.66

Cu, Co, S, Fe, N, C, and O contents were detected by XPS analysis and ICP-OES measurements

Electrode material	Areal capacitance/ capacity [F cm ⁻² /mA h cm ⁻²]	Specific capacitance/ capacity [F g ^{–1} /mA h g ^{–1}]	Current load	Electrolyte	Stability [Cycles]	References
CuCo ₂ S ₄ hollow nanoneedle arrays	-	2163 F g ⁻¹	6 mA cm ⁻²	0.6 M KOH	96.3% [3000]	[⁴]
flower-like CuCo ₂ S ₄	-	908.9 F g ⁻¹	5 mA cm^{-2}	2 M KOH	91.1% [2000]	[⁵]
Zn-Co-S NWs	0.90 mAh cm^{-2}	366.7 mAh g ⁻¹	3 mA cm^{-2}	6 M KOH	93.2% [10000]	[6]
FeCo ₂ S ₄ -NiCo ₂ S ₄	3.5 F cm^{-2}	1519 F g ⁻¹	5 mA cm^{-2} (2.2 A g ⁻¹)	3 М КОН	77% [3000]	[⁷]
NiCo ₂ S ₄ @Ni- Mn-LDH	1.74 F cm ⁻²	-	1 mA cm^{-2}	6 M KOH	88.3% [1000]	[⁸]
Grass-like Ni ₃ S ₂ nanorod/nanowire	4.52 F cm^{-2}	-	1.25 mA cm ⁻²	3 M KOH	108.3% [2000]	[⁹]
NiCo ₂ S ₄ burl-like nanostructures	1.19 F cm^{-2}	-	1 mA cm^{-2}	2 M KOH	79.9% [2000]	[¹⁰]
FeCo ₂ S ₄	-	2411 F g ⁻¹	2 mA cm^{-2}	3 M KOH	72% [5000]	[11]
NiCo ₂ S ₄ @CoS _x core-shell	4.74 F cm ⁻²	-	5 mA cm^{-2}	1 M KOH	76.1% [1500]	[¹²]
NiCo ₂ S ₄ nanotube arrays	0.87 F cm^{-2}	-	4 mA cm ⁻²	1 M KOH	96% [2000]	[¹³]
MOF derived CuCo ₂ S ₄ NS arrays	0.96 mAh cm ⁻²	409.2 mA h g ⁻¹	3 mA cm^{-2} (0.97 A g ⁻¹)	2 M KOH	94.2% [10000]	This work

Table S2 MOF derived $CuCo_2S_4$ NS electrode electrochemical properties comparison with reported literatures.

 Table S3 ASCs device properties comparison with reported literatures.

Reported ASC Device	Gravimetric/Geometric Capacity/Capacitance	Device Window [V]	Gravimetric/ Geometric Energy	Gravimetric/ Geometric Power	Electrolyte	Stability [Cycles]	Refer ences
Co-MOF/NF//AC	4.84 F cm ⁻²	0-1.6	1.72 Wh cm ⁻²	4 W cm ⁻²	2 M KOH	69.7% [2000]	[¹⁴]
Zn–Ni–P NS//Fe ₂ O ₃ @NG	112.7 mAh g ⁻¹ (1.99 mAh cm ⁻³)	0-1.6	91.12 Wh kg ⁻¹	611 W kg ⁻¹	PVA/KOH	93 % [10000]	[¹⁵]
CuCo ₂ S ₄ //MoO ₂ @NC	184 F g ⁻¹	0-1.6	65.1 Wh kg ⁻¹	800 W kg^{-1}	PVA/KOH	90.6% [5000]	[16]
Ni–Zn–Co–S-0.33 NSAs/NF//Bi ₂ O ₃ /NF	114.7 mAh g ⁻¹ (0.6 mAh cm ⁻²)	0-1.6	91.7 Wh kg ⁻¹	$458 \mathrm{~W~kg^{-1}}$	3 M KOH	88% [1000]	[¹⁷]
Ni-dMXNC//Ti ₃ C ₂ T _x	4.7 mAh g ⁻¹	0-1.8	0.01 Wh cm^{-3}	0.22 W cm ⁻³	1 M KOH	72.1% [5000]	[¹⁸]
NiCo ₂ S ₄ @Ni(OH) ₂ //AC	159 F g ⁻¹	0-1.8	65.7 Wh kg ⁻¹	825 W kg^{-1}	PVA/KOH	90.7% [10000]	[¹⁹]
V-MOF//AC	146.5 mF cm^{-2}	0-1.6	0.007 Wh cm^{-3}	0.07 W cm^{-3}	PVA/ Na ₂ SO ₄	93.6% [10000]	[²⁰]
NiCo ₂ S ₄ //rGO	111.5 F g ⁻¹	0-1.5	38.6 Wh kg ⁻¹	1330 W kg ⁻¹	PVA/KOH	99.3% [5000]	[²¹]
FeCo ₂ S ₄ //3D PNG	-	0-1.6	76.1 Wh kg ⁻¹	755 W kg ⁻¹	PVA/KOH	82% [10000]	[11]
MnCo2O4@CoS//AC	151.8 F g ⁻¹	0-1.6	55.1 Wh kg ⁻¹	477.3 W kg ⁻¹	PVA/KOH	91% [6000]	[²²]
MOF derived CuCo ₂ S ₄ NS arrays//Fe ₂ O ₃ /NG	111.13 mAh g ⁻¹ (2.1 mAh cm ⁻³)	0-1.6	89.6 Wh kg ⁻¹ 0.68 Wh cm ⁻³	663 W g ⁻¹ (5.0 W cm ⁻³)	PVA/KOH	91.5% [10000]	This work

References

- 1. T. Yamashita and P. Hayes, *Applied surface science*, 2008, **254**, 2441-2449.
- 2. L. Tang, Z. Xie, G. Zeng, H. Dong, C. Fan, Y. Zhou, J. Wang, Y. Deng, J. Wang and X. Wei, *RSC Adv*, 2016, **6**, 25724-25732.
- 3. M. Du, J. Sun, J. Chang, F. Yang, L. Shi and L. Gao, *RSC Adv*, 2014, 4, 42412-42417.
- 4. S. E. Moosavifard, S. Fani and M. Rahmanian, *Chem Commun*, 2016, **52**, 4517-4520.
- 5. Y. Zhang, J. Xu, Y. Zhang, Y. Zheng, X. Hu and Z. Liu, *J Mater Sci*, 2017, **52**, 9531-9538.
- 6. C. Li, J. Balamurugan, N. H. Kim and J. H. Lee, *Adv energy Mater*, 2018, **8**, 1702014-1702026.
- 7. J. Zhu, S. Tang, J. Wu, X. Shi, B. Zhu and X. Meng, *Adv energy Mater*, 2017, 7, 1601234.
- 8. H. Wan, J. Liu, Y. Ruan, L. Lv, L. Peng, X. Ji, L. Miao and J. Jiang, *ACS applied materials & interfaces*, 2015, **7**, 15840-15847.
- 9. T. Li, Y. Zuo, X. Lei, N. Li, J. Liu and H. Han, *J Mater Chem A*, 2016, 4, 8029-8040.
- 10. M. Sun, J. Tie, G. Cheng, T. Lin, S. Peng, F. Deng, F. Ye and L. Yu, *J Mater Chem A*, 2015, **3**, 1730-1736.
- 11. S. Tang, B. Zhu, X. Shi, J. Wu and X. Meng, Adv energy Mater, 2017, 7, 1601985.
- W. Fu, C. Zhao, W. Han, Y. Liu, H. Zhao, Y. Ma and E. Xie, *J Mater Chem A*, 2015, 3, 10492-10497.
- 13. H. Li, M. Yu, F. Wang, P. Liu, Y. Liang, J. Xiao, C. Wang, Y. Tong and G. Yang, *Nat Commun*, 2013, **4**, 1894.
- 14. G. Zhu, H. Wen, M. Ma, W. Wang, L. Yang, L. Wang, X. Shi, X. Cheng, X. Sun and Y. Yao, *Chem Commun*, 2018, **54**, 10499-10502.
- 15. T. T. Nguyen, J. Balamurugan, N. H. Kim and J. H. Lee, *J Mater Chem A*, 2018, **6**, 8669-8681.
- 16. S. Liu, Y. Yin, K. S. Hui, K. N. Hui, S. C. Lee and S. C. Jun, *Adv Sci*, 2018, **5**, 1800733-1800744.
- 17. Y. Huang, L. Quan, T. Liu, Q. Chen, D. Cai and H. Zhan, *Nanoscale*, 2018, **10**, 14171-14181.
- 18. Q. X. Xia, J. Fu, J. M. Yun, R. S. Mane and K. H. Kim, *RSC Adv*, 2017, 7, 11000-11011.
- 19. J. Huang, J. Wei, Y. Xiao, Y. Xu, Y. Xiao, Y. Wang, L. Tan, K. Yuan and Y. Chen, *ACS Nano*, 2018, **12**, 3030-3042.
- 20. Y. Yan, Y. Luo, J. Ma, B. Li, H. Xue and H. Pang, *Small*, 2018, 14, 1801815.
- F. Lu, M. Zhou, W. Li, Q. Weng, C. Li, Y. Xue, X. Jiang, X. Zeng, Y. Bando and D. Golberg, *Nano Energy*, 2016, 26, 313-323.
- 22. G. Liu, B. Wang, T. Liu, L. Wang, H. Luo, T. Gao, F. Wang, A. Liu and D. Wang, *J Mater Chem A*, 2018, **6**, 1822-1831.