Supporting Information

Band engineering and crystal field screening in thermoelectric Mg₃Sb₂

Xiaojian Tan^{1,2}, Guoqiang Liu^{1,2,*}, Haoyang Hu¹, Hezhu Shao^{1,2}, Jingtao Xu^{1,2}, and Jun Jiang^{1,2,*}

¹Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;

²Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;

E-mail: liugq@nimte.ac.cn, jjun@nimte.ac.cn

S1. Band structure

Figure S1. The calculated band structure for Mg₃Sb₂ by using PBE and mBJ functional, without and with spin-orbit coupling (SOC) effect.

S2. First Brillouin zone

Figure S2. The high symmetry points in the first Brillouin zone of Mg₃Sb₂, and the *k*-path along Γ -M-K- Γ -A-L and L'(0, 0.417, 0.5) to M'(0, 0.417, 0) are shown.

S3. Band convergence in shrunken Mg₃Sb₂

Figure S3. Calculated band structure of shrunken Mg₃Sb₂, and a complete conduction band convergence is achieved.

S4. Band effective mass

Based on the band dispersion of density functional calculations, the effective mass tensor $m_{i,j}^*$ of band edge can be determined by

$$m_{i,j}^* = \frac{\hbar^2}{\partial E(k)^2 / \partial k_i \partial k_j}$$

For the anisotropic Mg₃Sb₂, the band effective mass then can be calculated by $m_b^* = \sqrt[3]{m_{xx}^* m_{yy}^* m_{zz}^*}$.

The calculated band effective masses and DOS effective masses for the first VBM of Ba-doped Mg₃Sb₂ are summarized in Table S1.

Ba content	$m_{xx/}^{*}m_{yy}^{*}(m_{e})$	$m_{zz}^{*}(m_{e})$	$m_{b}^{*}(m_{e})$
0.0	1.143	0.136	0.562
0.125	1.079	0.131	0.534
0.25	1.014	0.127	0.507
0.375	0.926	0.129	0.480

S5. Local structure of Ba-doped Mg₃Sb₂

Figure S4. When doping Ba into Mg₃Sb₂, the local structure is little bit changed. Take Ba_{0.375}Mg_{2.625}Sb₂ for example, the lattice parameter *a* increases mildly (from 4.606 to 4.690 Å) while *c* increases significantly (from 7.248 to 7.677 Å) relative to pristine Mg₃Sb₂.

S6. Hole mobility

Figure S5. The fitted hole mobility as a function of hole concentration and temperature for *p*-type Mg₃Sb₂, and the experimental results[S1] are also shown for comparison.

S7. Lattice thermal conductivity

Figure S6. The fitted lattice thermal conductivity as a function of temperature for Mg₃Sb₂, and the experimental results[S1,S2,S3] are also shown for comparison.

References

[S1] L. Song, J. Zhang, B. B. Iversen, Simultaneous improvement of power factor and thermal conductivity *via* Ag doping in *p*-type Mg₃Sb₂ thermoelectric materials, *J. Mater. Chem. A* 5 (2017) 4932–4939.

[S2] Z. Ren, J. Shuai, J. Mao, Q. Zhu, S. Song, Y. Ni, S. Chen, Significantly enhanced thermoelectric properties of *p*-type Mg₃Sb₂ via co-doping of Na and Zn, *Acta Mater*. 143 (2018) 265–271.

[S3] H. Tamaki, H. K. Sato, T. Kanno, Isotropic conduction network and defect chemistry in $Mg_{3+}Sb_2$ -based layered Zintl compounds with high thermoelectric performance, *Adv. Mater.* 28 (2016) 10182–10187.