Supporting Information for

Superior lithium-storage properties derived from a high pseudocapacitance behavior for a peony-like holey Co₃O₄ anode

Huanhuan Duan,^{ab} Li Du,^{ab} Shenkui Zhang,^{ab} Zhuowen Chen,^{ab} and Songping Wu*^{ab}

- a- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China.
- b- Guangdong Key Laboratory of Fuel Cell Technology, Guangzhou, 510641, China.

*Corresponding author, E-mail: <u>chwsp@scut.edu.cn</u>

Experimental section:

High and low temperature electrochemical performances were tested in a voltage range from 0.01-3.0 V with a digital-controlled oven (80 °C, Keelrein, Shanghai, China) and a refrigerator (-25 °C, SIEMENS, Germany), respectively.

Figure S1. (a, b) SEM images of peony-like Co_3O_4 electrode after calendaring; (c) XPS survey spectrum of peony-like Co_3O_4 ; (d) O 1s XPS spectrum of commercial Co_3O_4 .

Figure S2. The nitrogen adsorption-desorption isotherms of Co₃O₄.

Figure S3. Cyclic voltammetry curves of peony-like Co_3O_4 at a scan rate of 0.5 mV s⁻¹ with a current density of 500 mA g⁻¹ after different cycles.

Figure S4. SEM image of commercial Co₃O₄ material.

Figure S5. EIS profiles of peony-like Co₃O₄ and commercial Co₃O₄ electrode.

Figure S6. The equivalent circuit diagram of simulating peony-like Co_3O_4 and commercial Co_3O_4 electrodes assembled in coin cells. (R_e is electrolyte resistance, R_s is SEI layer resistance, R_{ct} is charge transfer resistance, CPE_s is surface films capacitance, CPE_{dl} is double-layer capacitance, Z_w is Warburg impedance.)

Table S1. Fitted kinetic parameters of peony-like Co_3O_4 and commercial Co_3O_4 electrodes, respectively.

Sample	$R_{ m e}(\Omega)$	$R_{\rm s}(\Omega)$	$R_{\rm ct}(\Omega)$
Peony-like Co ₃ O ₄ electrode	4.40	5.90	61.02
Commercial Co ₃ O ₄ electrode	4.84	5.86	118.23

Cycle Number	1st	3rd	5th	10th	50th	800th
$R_{ m e}(\Omega)$	4.40	4.39	4.80	4.5	5.01	15.23
$R_{\rm s}(\Omega)$	5.90	5.43	4.32	5.11	5.35	5.50
$R_{\rm ct}(\Omega)$	61.02	43.21	44.72	45.76	45.31	27.21

Table S2. Fitted kinetic parameters of peony-like Co_3O_4 electrode at a current density of 500 mA g⁻¹ after different cycles.

Figure S7. Cycle performance of commercial Co_3O_4 electrode at a current density of 500 mA g⁻¹.

Figure S8. Electrochemical performances of peony-like Co_3O_4 at (a) 80 °C (@1 A g⁻¹); (b) -25 °C (@200 m A g⁻¹).

The results of high-temperature lithium-storage capability of peony-like Co_3O_4 electrode were shown in **Figure S8a**. The peony-like Co_3O_4 electrode achieved a first discharge capacity of 1220.9 mA h g⁻¹ at a current density of 5.0 A g⁻¹ under 80 °C, with an initial Coulombic efficiency of 65.9%. After 3000 cycles, a stable reversible capacity of 315.5 mA h g⁻¹ was retained, which showed that this peony-like Co_3O_4 electrode possessed a good cycling stability under high temperature at a large current density. In addition, we also attempted to check the feasibility of as-prepared material as electrode under low temperature (-25 °C). As shown in **Figure S8b**, it is necessary to point out that the electrode rendered an initial discharge capacity of 87%. After running 50 cycles, this electrode delivered a reversible capacity of 642 mA h g⁻¹ with an average Coulombic efficiency of 95%, which can be ascribed to slow ion diffusion under low temperature.

Morphology	Synthesis method	Current rate (mA g ⁻¹)	Tempe - raptur e (°C)	Cycle number	Capacity (mAh g ⁻¹)	Ref.
Hierarchical CNT/Co ₃ O ₄ microtubes	chemical transformation/ annealing	1000 4000	25	200	782 577	1
Co ₃ O ₄ hexagonal plates	solvothermal method	350	25	50	 671 Co₃O₄-EtOH 485 Co₃O₄-MeOH 350 Co₃O₄-IPA 829 Co₃O₄-TT 	2
Co ₃ O ₄ hollow spheres	solution-based method	1000	25	100	1058	3
Hollow	Electrodepositi	500	25	100	1048	4

 Table S3. Electrochemical performances and physical parameters of cobalt oxidebased anode materials.

Co ₃ O ₄ /carb- on nanosheet composites	on/annealing					
Co ₃ O ₄ hollow sphere	solvothermal method	1000 5000 5000	25	500 6000	924 335 219	5
Shale-like Co ₃ O ₄	annealing	200	25	100	1045.3	6
Carbon- doped Co ₃ O ₄ hollow nanofibers	electrospinning technique/hydr othermal method	200	25	100	1121	7
Co ₃ O ₄ nanosheets	hydrothermal reactions/heat treatment process	200	25	100	1029	8
Bowknot- like Co ₃ O ₄	hydrothermal method/ calcination	178 178 1780	25	1 100 500	1427.9 1388.8 751.3	9
N-doped 3D mesoporous Co ₃ O ₄ network	dipping process/anneali ng	200 5000	25	200 700	957 485	10
Co ₃ O ₄ /Ag composite	dealloying method	1000	25	1000	468.5	11
Two- dimensional holey Co ₃ O ₄ nanosheets	template- directed strategy	1000	25	200	850	12
Peony-like	solvothermal	<u>500</u> <u>10000</u>	<u>25</u> <u>25</u>	<u>800</u> <u>1000</u>	<u>1880</u> <u>341.4</u>	This
holey Co ₃ O ₄	method	5000	80	3000	315.5	— work

Table S4. The percentages of capacitive-effect contribution under different temperatures (-25, 25, 80 °C) with a series of sweep rates of 0.1, 0.3, 0.5, 1.0, 1.5 mV s⁻¹, respectively.

<i>v</i> /mV s T/°C	0.1	0.3	0.5	1.0	1.5
-25	25.0%	30.1%	36.0%	50.7%	57.2%
25	54.5%	63.2%	68.7%	77.9%	83.5%
80	57.1%	66.6%	74.7%	84.0%	90.0%

Figure S9. Capacitive contribution (shadow area) to total lithium-storage capacity at sweep rates of (a) 0.1 mV s⁻¹, (b) 0.5 mV s⁻¹, (c) 1.0 mV s⁻¹, (d) 1.5 mV s⁻¹ under 25

Figure S10. (a) CV curves after first three discharge/charge cycles with different sweep rates at 80 °C; (b) $\ln(i)$ peak current) versus $\ln(v)$ sweep rate) of four peaks (marked as 1-4 in (a)), and where fitted-line slope is b-value (There is a perfect fitting degree due to the value of R-square is close to ~1.); Capacitive contribution (shadow area) to total lithium-storage capacity at sweep rates of (c) 0.1 mV s⁻¹, (d) 0.3 mV s⁻¹,

(e) 0.5 mV s⁻¹, (f) 1.0 mV s⁻¹, (g) 1.5 mV s⁻¹; (h) The percentages of capacitive-effect contribution at different sweep rates of 0.1, 0.3, 0.5, 1.0, and 1.5 mV s⁻¹.

Figure S11. (a) CV curves after first three discharge/charge cycles with different sweep rates at -25 °C; (b) $\ln(i)$ peak current) versus $\ln(v)$, sweep rate) of two peaks (marked as 1-2 in (a)), and where fitted-line slope is b-value (There is a perfect fitting degree due to the value of R-square is close to ~1.); Capacitive contribution (shadow area) to total lithium-storage capacity at sweep rates of (c) 0.1 mV s⁻¹, (d) 0.3 mV s⁻¹, (e) 0.5 mV s⁻¹, (f) 1.0 mV s⁻¹, (g) 1.5 mV s⁻¹; (h) The percentages of capacitive-effect

contribution at different sweep rates of 0.1, 0.3, 0.5, 1.0, and 1.5 mV s⁻¹.

References:

- 1 Y. M. Chen, L. Yu and X. W. Lou, Angew. Chem. Int. Ed., 2016, 55, 5990-5993.
- 2 W. Zhao, X. Zhou, I. J. Kim and S. Kim, Nanoscale, 2017, 9, 940-946.
- 3 J. Z. Yin, Y. Zhang, Q. Y. Lu, X. L. Wu, Z. J. Jiang, L. Y. Dang, H. F. Ma, Y. Y. Guo, F. Gao and Q. Y. Yan, J. Mater. Chem. A, 2017, 5, 12757-12761.
- 4 L. Peng, Y. Y. Feng, Y. J. Bai, H. J. Qiu and Y. Wang, J. Mater. Chem. A, 2015, 3, 8825-8831.
- 5 H. Sun, G. Xin, T. Hu, M. Yu, D. Shao, X. Sun and J. Lian, Nat. Commun., 2014, 5, 4526.
- 6 H. H. Li, Z. Y. Li, X. L. Wu, L. L. Zhang, C. Y. Fan, H. F. Wang, X. Y. Li, K. Wang, H. Z. Sun and J. P. Zhang, J. Mater. Chem. A, 2016, 4, 8242-8248.
- 7 G. C. Chunshuang Yan , Xin Zhou , Jingxue Sun , and Chade Lv, *Adv. Funct. Mater.*, 2016, 26, 1428-1436.
- 8 D. Zhang, W. Sun, Z. Chen, Y. Zhang, W. Luo, Y. Jiang and S. X. Dou, *Chemistry*, 2016, 22, 18060-18065.
- 9 H. R. Du, C. Yuan, K. F. Huang, W. H. Wang, K. Zhang and B. Y. Geng, J. Mater. Chem. A, 2017, 5, 5342-5350.
- 10 S. Zhu, J. J. Li, X. Y. Deng, C. N. He, E. Z. Liu, F. He, C. S. Shi and N. Q. Zhao, Adv. Funct. Mater., 2017, 27, 1605017.
- 11 Q. Hao, Y. Yu, D. Y. Zhao and C. X. Xu, J. Mater. Chem. A, 2015, 3, 15944-15950.
- 12 D. H. Chen, L. L. Peng, Y. F. Yuan, Y. Zhu, Z. W. Fang, C. S. Yan, G. Chen, R. Shahbazian-Yassar, J. Lu, K. Amine and G. H. Yu, *Nano Lett.*, 2017, **17**, 3907-3913.