Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Supporting Information

A New Metal-Organic Open Framework Enabling Facile Synthesis of Carbon Encapsulated Transition Metal Phosphide/Sulfide Nanoparticle Electrocatalysts[†]

Baicheng Weng, Xiaoming Wang, Corey R. Grice, Fenghua Xu, and Yanfa Yan*

* Correspondence and requests for materials should be addressed to Y.F.Y. (email: yanfa.yan@utoledo.edu).

Supporting Figures

3H-imidazole.

Fig. S2. FTIR patterns of the obtained 1,3-Di(4-pyridyl)propane (black curve) and $[NiFeDPPP(1,3-Di(4-pyridyl)propane)_2]_n$ (red curve). Asterisks: characteristic peaks of pyridine rings. Double-cross: characteristic peak of phenylphosphine groups.

Fig. S3. XRD patterns of NiP/NiFeP/C between 40° and 50°. Reference diffraction patterns of standard $Ni_{12}P_5$ and NiFeP are also labeled.

Fig. S4. SEM image of the obtained NiP/NiFeP/C, showing the carbon fibers.

Fig. S5. TEM image of the obtained NiP/NiFeP/C. Yellow arrows show the amorphous shell the nanoparticle.

Fig. S6. XPS spectra of the Ni 2p, Fe 2p, P 2p, C 1s, and N 1s core-levels of NiP/NiFeP/C.

Fig. S7. Raman spectrum of NiP/NiFeP/C. The peak positions (1349 and 1586 cm⁻¹) corresponding to D and G bands of heteroatom-doped carbon are also labeled.

Fig. S8. HER performance of NiP/NiFeP/C and Pt/C in 1.0 M KOH. (a) Polarization curves. (b) Corresponding Tafel slopes. (c) Stability test of NiP/NiFeP/C for 1000 HER cycles. Pt/C (commercial Pt/C, 20% Pt) was compared as a reference. Pt/C shows an onset potential of 0 mV and achieves a stable current density of -10 mA cm⁻² at a potential of -73 mV (vs. RHE) in 1.0 M KOH.^{S1, S2}

Fig. S9. Cyclic volumetric curves with both positive and negative scans of NiP/NiFeP/C and the samples obtained by pyrolysis of Ni, Fe-MOF at 600 °C and 700 °C for OER in 1.0 M KOH. RuO₂, NiP/C and NiP-mC are also added for comparisons.

Fig. S10. EIS curves of the NiP/NiFeP/C, NiP/C, and NiFe-LDH samples. Inserted circuit model: R_{sol} : resistance of solution, R_{ct} : charge transfer resistance, C_{dl} : double-layer capacitance. Dash lines are the fitting curves according to the inserted circuit model. Inserted table shows equivalent circuit parameters obtained from EIS measurements.

Fig. S11. SEM image of NiP/NiFeP/C after stability test.

Fig. S12. STEM-EDS elemental mapping and linear scanning of the NiP/NiFeP/C after stability test. (a) STEM image. (b) Overlapping of elemental mapping. (c) P, Ni, Fe, and O elemental mapping. (d) Linear scanning of the NiP/NiFeP/C sample. Scale bar: 100 nm.

Fig. S13. XRD pattern of the NiP/NiFeP/C after stability test. The dash lines are added for eye.

Fig. S14. XPS P 2p core-level of the NiP/NiFeP/C after stability test.

Fig. S15. Hydrogen evolution rate and Faradaic efficiency from gas chromatography measurement for the bifunctional NiP/NiFeP/C catalyst in a two-electrode overall water splitting system.

Fig. S16. (a) Unit-cell content of the crystal structure of the Mo, W-MOF with atoms labeled. Hydrogen and carbon atoms are not labeled for clarity. (b) The crystal structure of Mo, W-MOF with $4 \times 4 \times 3$ unit cells (b × c × a). (c) Experimental and simulated XRD patterns of Mo, W-MOF.

Compared to Ni, Fe-MOF, the Mo, W-MOF uses the thiocyanate rather than 1,3-bis(4-pyridyl)propane linkers to reduce the carbon content and introduce S into the obtained electrocatalyts. Each Mo/W atom coordinates three N atoms, three S atoms, and two P atoms, while adjacent TM atoms are separated with at least two benzene rings. The experimental and simulated XRD patterns match closely, indicating a high crystal purity for the synthesized samples.

Fig. S17. (a) XRD patterns of MoWS/MoP/C, and reference diffraction patterns of standard $Mo_{0.5}W_{0.5}S_2$, WS_2 , MoS_2 , and MoP are also labeled. c) Raman spectra of MoWS/MoP/C and WS_2 , MoS_2 . Inserted images in (a) and (b): crystal structure of $Mo_{0.5}W_{0.5}S_2$.

The structure of $Mo_{0.5}W_{0.5}S_2$ is similar to its counterpart, 2H-MoS₂. In one layer, a plane of Mo (or W) atoms is sandwiched covalently between two planes of S atoms in a trigonal prismatic arrangement. The

interaction between layers is dominated by van der waal forces. Each hexahedral layer of 2H-MoS₂ is sandwiched by two layers of 2H-WS₂ hexahedral layers (**Fig. S17a and S17b**, inserted images) with different interlayer spacing of ~ 4 Å and ~ 12.6 Å. While the interlayer spacing of 2H-MoS₂ is 4.6 Å.^{S3} It is believed that increasing the interlayer spacing of MoS₂ will tune its electronic structure, and more than 7% expansion will be treated as a two-dimensional single-layer model.^{S4} Further Raman characterizations (**Fig. S17b**) confirm the XRD analysis. Raman spectrum of MoWS/MoP/C exhibits four distinct peaks at 417.9, 400.0, 368.8, and 339.1 cm⁻¹, and the peaks located at 400.0 and 368.8 cm⁻¹ correspond to the out-of-plane Mo–S phonon mode (A_{1g}) and the in-plane Mo–S mode (E¹_{2g}) of typical MoS₂-layered structure, respectively. While the peaks located at 417.9 and 339.1 cm⁻¹ are ascribed to the A_{1g} and E¹_{2g} of typical WS₂-layered structure, respectively.^{S5} The Raman spectra also show red-shift of the A_{1g} and E¹_{2g} peaks, which results from the greatly expanded interlayer spacing. Notably, compared to Raman spectra of pristine MoS₂ and WS₂, the integrated intensity of A_{1g} is almost 3.5 times higher than that of E¹_{2g}, so the obtained MoWS/MoP/C sample favors the vibration of A_{1g} mode and displays the highly exposed edge sites.

Fig. S18. SEM (a) and TEM (b) images of the obtained MoWS/MoP/C.

Fig. S19. (a) Polarization curves of MoWS/MoP/C, MoS₂, and (NH₄)₂Mo₃S₁₃ for HER in 0.5 M H₂SO₄. (b) Corresponding Tafel plots. (c) Durability test for MoWS/MoP/C sample at -10 mA cm⁻² and -20 mA cm⁻² for 20 h and its corresponding polarization curves (inserted plot). (d) Comparison of the electrochemical activities (Tafel slopes and potentials at -10 mA cm⁻²) with the reported MoS₂ nanostructures, such as Li-MoS₂/CC, ^{S6} 1T-WS₂ NSs, ^{S7} Ni-Mo-S/CC, ^{S8} monolayer Co-MoS₂/CC, ^{S9} MoS₂/S-vacancies, ^{S10} monolayer MoS₂/rGO, ^{S11} Na/1T-MoS₂, ^{S12} Defect-rich MoS₂, ^{S13} MoO₃/MoS₂ NWs, ^{S14} and 1T-MoS₂ NSs. ^{S15} CC: carbon cloth, NWs: nanowires, NSs: nanosheets.

Fig. S20. XRD pattern of the synthesized $(NH_4)_2Mo_3S_{13} \cdot nH_2O$ with a reference spectrum displayed at the bottom (Joint Commission for Powder Diffraction Standards (JCPDS): #76-2038).

Table S1 Comparison of HER performa	ance for NiP/NiFeP/C with	other reported non-noble	electrocatalysts
in 0.5 M H ₂ SO ₄ .			

Samples	Potential (mV vs. RHE) at 10 mA cm ⁻²	Loading amount (mg cm ⁻²)	Tafel slope (mV dec ⁻¹)	References
NiP/NiFeP/C	-87	0.168	38	This work
S-CoWP@(S,N)-	-35	0.75	35	ACS Energy Lett., 2018, 3,
С		0.70		1434–1442.
CoPS NSs on	-48	N/A	56	Nature Materials, 2015,
carbon cloth		1011		14, 1245-1251
WP nanowires on	-130	2.00	69	ACS Appl. Mater.
carbon cloth	100	2.00	Û,	Interfaces 2014, 6, 21874
P-Mo ₂ C/C	-89	1.30	42	Energy Environ. Sci.
- 2				2017,10, 1262-1271
EG/Co _{0.85} Se/NiFe-	-225	4.00	160	Energy Environ. Sci.
LDH	-			2016, 9, 478483
Ultrathin $NiFeS_x$	-107	25±2	40	J. Am. Chem. Soc. 2015,
nanosheets	- • /			137, 11900–11903
CoWS _x	-238	N/A	N/A	Energy Environ. Sci.

_					
					2013, 6, 2452–2459
WD ND CONC	WP NPs@NC	-102	2.0	58	J. Mater. Chem. A 2016,
	WI IN SWINC	-102	2.0		4, 15327
I	P-W/N/rGO	85	0.34	54	Angew. Chem. Int. Ed.
	1-WIN/100	-05	0.54	54	2015, 54, 6325 –6329
	MoDIS	64	1.00	NI/A	Angew. Chem. 2014, 126,
	MOF S	-04	1.00	IN/A	14661 –14665
I					
	MPSA/GO	-163	0.30	89	Angew. Chem. Int. Ed.
	WII SA/OO	-105	0.50		2016, 55, 2230–2234
I	MoS sheet stacks	106	3 00	59	Energy Environ. Sci.
	WI05 ₂ sheet stacks	-100	5.00		2017,10, 593-603
	Nip Se /CD	102	N/A	40	ACS Catal. 2015, 5,
NIP _{1.93} Se _{0.07} /GD	-102	11/74	42	6355-6361	
Co-NG	147	0.29	82	Nat. Commun. 2015,	
	-14/	0.27		6:8668	

Table S2 Electrochemical properties of NiP-mc, NiP/NiFeP/C, and NiP/C samples.

Samples	$C_{\rm dl} ({\rm mF}~{\rm cm}^{-2})$	$J_{0,\text{geometrical}} (\text{mA cm}^{-2})$	$J_{0,\text{normalized}} (\text{mA cm}^{-2})$
NiP-mc	51.4	0.486	0.009
NiP/NiFeP/C	35.9	0.723	0.020
NiP/C	32.3	0.402	0.012

Table S3 Comparison of HER performance for NiP/NiFeP/C with other reported non-noble electrocatalysts

in	1.0	М	KOH.	
----	-----	---	------	--

Samples	Potential (mV vs. RHE) at -10 mA cm ⁻²	Loading amount (mg cm ⁻²)	Tafel slope (mV dec ⁻¹)	References
NiP/NiFeP/C	-138	0.168	68	This work
S-CoWP@(S,N)-C	-61	0.75	61	ACS Energy Lett., 2018 , 3, 1434–1442.
2.5H-PHNCMs	-70	1.00	38.1	Nat. Commun. 2017, 8,

				15377
EG/Co _{0.85} Se/NiFe- LDH	-260	4.00	160	Energy Environ. Sci. 2016, 9, 478483
Ni/NiP	-130	10.58-11.04	58.5	Adv. Funct. Mater. 2016, 26, 3314–3323
CoP nanowires on carbon cloth	-210	0.92	51	J. Am. Chem. Soc. 2014, 136, 7587
WP nanowires on carbon cloth	150	2.00	102	ACS Appl. Mater. Interfaces 2014, 6, 21874
NiFe-LDH	-210	N/A	N/A	Science 2014, 345, 1593
MOF derived MoC _x	-151	0.14	59	Nat. Commun. 2016, 6, 6512
N,S-CNT	-450	N/A	133	Adv. Energy Mater. 2017, 1602068
CoO _x /CN	-270	0.85	115	J. Am. Chem. Soc. 2015, 137, 2688
CP/CTs/Co-S	-190	0.32	101	ACS Nano, 2016, 2342– 2348
PCPTF	-370	0.10	53	Adv. Mater. 2015, 27, 3175– 3180
Co ₉ S ₈ @MoS ₂ /CNFs	-190	0.212	110	Adv. Mater. 2015, 27, 4752– 4759

 Table S4 Comparison of OER performance for NiP/NiFeP/C with recently reported catalysts in alkaline solution.

Samples	Potential (V vs. RHE) at 10 mA cm ⁻²	Tafel slope (mV dec ⁻¹)	TOF (s ⁻¹)	Loading amount (mg cm ⁻²)	References
NiP/NiFeP/C*	1.48	58	0.133 @1.51 V	0.168	This work
NiFe-LDH-rGO	1.53	82	0.1 @ 1.53V	0.25	ACS Nano 2015, 9, 1977- 1984
G-FeCoW [#] on Au coated nickel foam	1.45	N/A	0.46 @1.53 V	0.21	Science 2016 , 352, 333- 337

CoNi-P on nickel foam	1.50	52	N/A	0.153	<i>Energy Environ. Sci.</i> 2017 , 10, 893-899
NiCeO _x on Au	1.50	N/A	0.08 @1.51 V	~0.13	<i>Nature Energy</i> 2016 , 1, 16053
Ni ₂ P/Ni on nickel foam [#]	1.43	N/A	0.015 @1.58 V	N/A	<i>ACS Catal.</i> 2016 , 6, 714–721
NiPS ₃ @NiOOH	1.58	80	N/A	0.126	ACS Catal. 2017 , 7, 229–237
LT-LiCoO ₂	1.66	48	N/A	0.32	Energy Environ. Sci. 2016,9, 184-192
NiD-PCC	1.59	98	N/A	N/A	Energy Environ. Sci. 2016, 9, 3411-3416
Ni ₃ Se ₂	1.54	97	N/A	0.217	<i>Energy Environ. Sci.</i> 2016 , 9, 17711782
FeNi@NC	1.51	70	N/A	0.32	<i>Energy Environ. Sci.</i> 2016 , 9, 123129
Ni–P nanoplates	1.53	64	N/A	0.20	EnergyEnviron.Sci. 2016, 9, 12461250
De-LCoP@5.1 V	1.654	73	N/A	0.50	<i>Energy Environ. Sci.</i> 2015 , 8, 17191724
LT-LiCoO ₂	1.61	52	N/A	0.25	<i>Nat. Commun.</i> 2014 , 5, 3949
LiNi _{0.8} Al _{0.2} O ₂	1.58	44	N/A	0.051	Adv. Mater. 2015 , 27, 6063–6067
NiV-LDH	1.55	64	0.054 @1.58 V	0.143	Nat. Commun. 2016 , 7, 11981
CoMn-LDH	1.53	43	0.075 @ 1.53V	0.222	J. Am. Chem. Soc. 2014 , 136, 16481-16484
NiCo-LDH	1.62	59	0.05 @ 1.53V	0.07	<i>Nat. Commun.</i> 2014 , 5, 4477
NiFe*	1.65	N/A	0.075 @1.63 V	N/A	<i>Nat. Commun.</i> 2015 , 6, 6616
Co ₃ O ₄ /rm-GO	1.54	67	N/A	0.17	Nat. Mater. 2011, 10, 780
N-doped graphene- CoO	1.57	71	N/A	N/A	<i>Energy Environ. Sci.</i> 2014 , 7, 609

* on glassy carbon; # TOF estimated according to electrochemical active sites not all the metal cations.

References

- [S1] Z. Shi, K. Nie, Z. J. Shao, B. Gao, H. Lin, H. Zhang, B. Liu, Y. Wang, Y. Zhang, X. Sun, *Energy Environ. Sci.* 2017,10, 1487.
- [S2] M. Cabán-Acevedo, M. L. Stone, J. R. Schmidt, J. G. Thomas, Q. Ding, H. C. Chang, M. L. Tsai, J. H. He, J. Jin, *Nat. mat.* 2015, *14*, 1245.
- [S3] B. Hinnemann, P.G. Moses, J. Bonde, K.P. Jørgensen, J.H. Nielsen, S. Horch, I. Chorkendorff, J. K. Nørskov, J. Am. Chem. Soc. 2005, 127, 5308.
- [S4] K. Kobayashi, J. Yamauchi, Phys. Rev. B 1995, 51, 17085.
- [S5] N. H. Attanayake, A. C. Thenuwara, A. Patra, Y. V. Aulin, T. M. Tran, H. Chakraborty, E. Borguet, M. L. Klein, J. P. Perdew, D. R. Strongin, ACS Energy Lett. 2018, 3, 7.
- [S6] H. Wang, Z. Lu, S. Xu, D. Kong, J. J. Cha, G. Zheng, P. C. Hsu, K. Yan, D. Bradshaw, F. B. Prinz, Y. Cui, PNAS. 2013, 110, 19701.
- [S7] M. A. Lukowski, A. S. Daniel, C. R. English, F. Meng, A. Forticaux, R. J. Hamers, S. Jin, *Energy Environ. Sci.* 2014, 7, 2608.
- [S8] J. Miao, F. X. Xiao, H. B. Yang, S. Y. Khoo, J. Chen, Z. Fan, Y. Y. Hsu, H. M. Chen, H. Zhang, B. Liu, Sci. Adv. 2015, 1, e1500259.
- [S9] X. Hai, W. Zhou, S. Wang, H. Pang, K. Chang, F. Ichihara, J. Ye, Nano Energy 2017, 39, 409.
- [S10] H. Li, C. Tsai, A. L. Koh, L. Cai, A. W. Contryman, A. H. Fragapane, J. Zhao, H. S. Han, H. C. Manoharan, F. Abild-Pedersen, *Nat. Mater.* 2016, 15, 48.
- [S11] Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, H. Dai, J. Am. Chem. Soc. 2011, 133, 7296.
- [S12] N. H. Attanayake, A. C. Thenuwara, A. Patra, Y. V. Aulin, T. M. Tran, H. Chakraborty, E. Borguet, M. L. Klein, J. P. Perdew, D. R. Strongin, ACS Energy Lett. 2018, 3, 7.
- [S13] J. Xie, H. Zhang, S. Li, R. Wang, X. Sun, M. Zhou, J. Zhou, X. W. Lou, Y. Xie, Adv. Mater. 2013, 25, 5807.
- [S14] Z. Chen, D. Cummins, B. N. Reinecke, E. Clark, M. K. Sunkara, T. F. Jaramillo, Nano Lett. 2011, 11, 4168.
- [S15] M. A. Lukowski, A. S. Daniel, F. Meng, A. Forticaux, L. Li, S. Jin, J. Am. Chem. Soc. 2013, 135, 10274.