Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Design of Doped Cesium Lead Halide Perovskite as Photo-Catalytic CO₂ Reduction Catalyst

Chao Tang, Chongyang Chen, Weiwei Xu, and Lai Xu*

Email: xulai15@suda.edu.cn

Figure S1. The ab initio molecular dynamics (AIMD) calculations of structures corresponding to Fig. 1 at 300 K (NVT) for 1 ps, (a) is pristine, (b-i) represents the doping of Co, Fe, Ag, Mg, Mn and Bi respectively.

Table S1. Lattice parameters of pristine and doped perovskite with different metals corresponding to

Figure 1.

Name	a (Å)	b (Å)	c (Å)	α (º)	β (º)	γ (º)
pristine	11.92	11.92	11.92	84.54	84.54	89.48
Co-doped	12.06	11.95	11.93	86.41	87.97	91.55
Fe-doped	12.06	11.95	11.94	86.64	87.16	91.73
Ni-doped	12.09	11.99	11.93	86.48	85.59	92.09
Cu-doped	12.08	11.98	11.93	84.92	84.73	91.96
Ag-doped	11.92	11.92	11.93	87.17	87.39	89.96
Mg-doped	12.06	11.96	11.91	87.56	86.41	90.52
Mn-doped	12.07	11.96	11.94	87.08	87.25	89.37
Bi-doped	12.08	11.98	11.94	85.97	86.29	90.36

Table S2. Summary of adsorption energies and possible configurations on Co-doped CsPbBr3 explored

by this study.

HCOO*	Top View					
	Side View	1.86Å	Eads = -2.32 eV	2.47Å		
HCO*O	Top View					
-	Side View	1.98Å	2.09Å	2.09Å	3.07Å	1.97Å
H₂CO*O	Top View					
I	Side View		2.45Å	2.29Å		
		Eads = -2.24 eV	Eads = -1.09 eV	Eads =-1.63 eV		

HC*O	Top View					
	Side View	 1.86Å 	2.11Å	e e e e e e e e e e e e e e e e e e e	3.01Å	
H ₂ CO*	Top View					
	Side View	1.94Å	1.95Å	2.74Å	1.94Å	
H ₃ CO*	Top View					
	Side View	1.77Å	2.23Å			

C*H₂OH	Top View				
	Side View	1.95Å	2.09Å	2.26Å	
CH ₃ O*H	Top View				
	Side View	1.99Å	2.67Å		
C*H2	Top View				
	Side View	1.75Å	1.99Å		

C*H ₃	Top View				
	Side View	1.94Å	2.00Å		
CH₄*	Top View				
	Side View	2.60Å	3.17Å		
нс*он	Top View				
	Side View	1.80Å			

Table S3. Summary of adsorption energies and possible configurations on Fe-doped CsPbBr3 explored

by this study.

CO 2*	Top View					
	Side View	3.52Å	2.13Å			
C*0	Top View					
	Side View	\$1.98Å	1.78Å	3.50Å		
С*ООН	Top View					
	Side View	1.88Å	Eads = -0.92 eV	Eads =-1.14 eV	2.59Å	

HCOO*	Top View					
	Side View	1.88Å	2.48Å			
нсо*он	Top View					
-	Side View	1.99Å	Eads = -0.81 eV	2.05Å	2.83Å	2.82Å
H₂CO*O	Top View					
I	Side View	Eads = -2.29 eV	2.26Å			

HC*O	Top View				
	Side View	1.89Å	1.94Å		
H₂CO*	Top View				
	Side View	1.92Å	2.74Å	2.68Å	
H₃CO*	Top View				
	Side View		2.25Å		
°*	Side View	1.77Å	2.25Å		

C*H₂OH	Top View				
	Side View	1.93Å	2.03Å	Eads = -1.09 eV	
CH ₃ O*H	Top View				
	Side View	2.02Å	2.72Å		
C*H2	Top View				
	Side View	Eads = -3.85 eV	1.99Å		

C*H ₃	Top View				
	Side View	1.94Å	2.41Å		
CH₄*	Top View				
	Side View	1.91Å	3.00Å		
нс*он	Top View				
	Side View	1.80A			

Figure S2. Optimized geometries of stable intermediates on the catalyst active sites. a-o: CO₂*, C*O, C*OOH, HCOO*, HCO*OH, H₂CO*OH, HC*O, H₂CO*, H₃CO*, C*H₂OH, CH₃O*H, C*H₂, C*H₃, CH₄* and HC*OH on the Co-doped CsPbBr₃.

Figure S3. Optimized geometries of stable intermediates on the catalyst active sites. a-o: CO_2^* , C*O, C*OOH, HCOO*, HCO*OH, H₂CO*OH, HC*O, H₂CO*, H₃CO*, C*H₂OH, CH₃O*H, C*H₂, C*H₃, CH₄* and HC*OH on the Fe-doped CsPbBr₃.

Table S4. Adsorption energies of the adsorbate molecules on (100) surfaces of pristine, Co-doped and

Fe-doped	CsPbBr ₃	structures.
----------	---------------------	-------------

No	Intermediate	E _{ads} pristine	$E_{ads}^{Co-doped}$	$E_{ads}^{Fe-doped}$
INO.	structure	(eV)	(eV)	(eV)
1	CO ₂ *	-0.25	-0.39	-0.34
2	C*0	-1.11	-2.89	-1.83
3	C*OOH	-0.22	-2.13	-1.40
4	HCOO*	-1.11	-2.37	-1.83
5	HC*O	-1.50	-2.57	-1.83
6	HCO*OH	-0.23	-1.23	-0.94
7	H_2CO^*OH	-0.86	-2.24	-2.29
8	H ₂ CO*	-0.21	-1.29	-1.01
9	H₃CO*	-1.04	-2.32	-2.44
10	C*H ₂ OH	-1.66	-2.02	-1.64
11	CH₃O*H	-0.24	-1.35	-0.99
12	C*H ₂	-1.21	-3.73	-3.85
13	C*H₃	-0.66	-1.86	-1.62
14	CH_4*	-0.26	-0.27	-0.14
15	HC*OH	-1.94	-3.47	-2.62

Figure S4. The free energy diagrams of possible paths of CO_2 reduction process on pristine CsPbBr₃, and the important ΔG of the reaction steps are listed.

Table S5. Hirshfeld charge of Pb, Co and Fe in the pristine, Co-doped and Fe-doped CsPbBr₃

respectively.

Steps	Pb@pristine	Co@Co-doped	Fe@Fe-doped
Free Standing	0.477	0.153	0.055
CO ₂ *	0.455	0.041	0.028
HCOO*	0.468	0.104	0.068
HCO*OH	0.455	0.058	0.044
HC*OH	0.361	0.013	0.006
C*H₂OH	0.447	0.034	0.024
C*H ₂	0.353	0.048	0.047
C*H ₃	0.400	0.075	0.077
CH ₄ *	0.461	0.044	0.063
C*0	0.442	0.003	0.001
HC*O	0.383	0.034	0.013

Table S6. Hirshfeld charge of O1, O2 and C in the Co-doped CsPbBr₃.

<u></u>	01	03	
Steps	01	02	<u> </u>
Free Standing	-0.151	-0.151	0.302
CO ₂ *	-0.092	-0.118	0.308
HCOO*	-0.192	-0.272	0.114
HCO*OH	-0.138	-0.113	0.185
HC*OH	-0.073	NA	0.047
C*H ₂ OH	-0.106	NA	0.051
C*H ₂	NA	NA	-0.075
C*H ₃	NA	NA	-0.191
CH ₄ *	NA	NA	-0.165
C*0	-0.071	NA	0.123
HC*O	-0.17	NA	0.04

Steps	01	02	С
Free Standing	-0.151	-0.151	0.302
CO ₂ *	-0.082	-0.109	0.317
HCOO*	-0.179	-0.262	0.143
HCO*OH	-0.143	-0.117	0.183
HC*OH	-0.101	NA	0.012
C*H₂OH	-0.049	NA	0.033
C*H ₂	NA	NA	-0.078
C*H₃	NA	NA	-0.205
CH ₄ *	NA	NA	-0.159
C*0	-0.093	NA	0.095
HC*O	-0.172	NA	0.025

Table S7. Hirshfeld charge of O1, O2 and C in the Fe-doped CsPbBr₃.