## **Supplementary information**

# Facile Synthesis of Nitrogen-Doped Carbon Materials with Hierarchical Porous Structures for High-Performance Supercapacitors in Both Acid and Alkaline Electrolyte

Yuntong Li, Ling Liu, Yuzhe Wu, Tong Wu, Haiyang Wu, Qipeng Cai, Yiting Xu, Birong Zeng, Conghui Yuan\* and Lizong Dai\*

Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen, 361005, China.

E-mail: \*yuanch@xmu.edu.cn, \*lzdai@xmu.edu.cn

#### 1. Characterization

<sup>1</sup>H magnetic resonance (NMR) spectrum of the 2,4,6-Tris(4-aminophenyl)-1,3,5-triazine (**TAA**) was carried out on a Bruker Advanced II AV500 MHz NMR spectrometer. Fourier transform infrared spectoscopy (FT-IR) spectra was measured from a Nicolet Avatar 360. Scanning electron microscopy (SEM) images were taken using a Su-70 instrument. The X-ray photoelectron spectroscopy (XPS) spectra were tested on a PHI Quantum-2000 photoelectron spectrometer (Al K $\alpha$  with 1486.6 eV). Electrochemical impedance spectroscopies (EIS) were carried out with the frequency of 10<sup>-2</sup> to 10<sup>5</sup> Hz and at an amplitude of 5 mV.

### 2. Synthesis

#### Synthesis of TAA



The synthesis of 2,4,6-tris(4-aminophenyl)-1,3,5-triazine (**TAA**) was performed according to previous literature procedure with a minor modification.<sup>33</sup> The detailed synthetic procedure and corresponding NMR are listed as follows:

0.708 g of 4-aminobenzonitrile (6 mmol) was added to 1 mL of trifluoromethane sulfonic acid in 10 mL round-bottom flask and stirred for 15 min at 0 °C by ice-bath. Then, the above mixed solution was further stirred for 15 h at room temperature. Subsequently, NH<sub>3</sub>·H<sub>2</sub>O was added dropwise to the above solution to adjust pH value to 7. Finally, the resulting mixture was centrifuged for 3 times with large amount of deionized water and a yellow solid was obtained. [NMR] <sup>1</sup>H NMR (DMSOd<sub>6</sub>, 500 MHz)  $\delta$  = 5.91 (s, 6H), 6.68 (d, 6H), 8.34 (d, 6H).

Synthesis of Aa-NCas



Scheme S1. Synthetic procedure of Aa-TPA-TAA and Aa-NCa by using acetic acid as catalyst.

Typically, 0.709 g of TAA (2 mmol) and 0.40 g of TPA (3 mmol) were taken in a 50 mL round bottom flask and dissolved in 10 mL of 1,3,5-trimethylbenzene, 1,4-dioxane mixed solvent (v : v = 1 : 4). To this solution, 1 mL of acetic acid (Aa) was added, and stirred at room temperature for 6 h. The reaction mixture was then centrifuged, washed with ethanol for 3 times to remove unreacted monomers, thus affording solid powder. After drying in vacuum, the as-prepared precursor (Aa-TPA-TAA) was carbonized at 850 °C for 2 h with a heating rate of 5 °C min<sup>-1</sup> under Ar atmosphere to prepare Aa-NCa<sub>850</sub>. Synthesis of Ta-NCbs



Scheme S2. Synthetic procedure of Ta-TPA-TAB and Ta-NCb by using TfOH as catalyst.

Typically, 0.702 g of 1,3,5-tris(4-aminophenyl)benzene (TAB) (2 mmol) and 0.40 g of TPA (3 mmol) were taken in a 50 mL round bottom flask and dissolved in 10 mL of 1,3,5-trimethylbenzene, 1,4-dioxane mixed solvent (v : v = 1 : 4). To this solution, 20  $\mu$ L of trifluoromethanesulfonic acid was added, and precipitate was generated immediately. The reaction mixture was further stirred at room temperature for 10 min and then centrifuged, washed with ethanol for 3 times to remove unreacted monomers and afford solid powder. After drying in vacuum, the as-prepared precursor Ta-TPA-TAB was carbonized at 850 °C for 2 h with a heating rate of 5 °C min<sup>-1</sup> under Ar atmosphere to prepare Ta-NCb<sub>850</sub>.



Fig. S1 <sup>1</sup>H spectrum of the TAA.



**Fig. S2** FT-IR spectra of TPA, TAA, Ta-TPA-TAA and Aa-TPA-TAA (a); XPS survey spectra of TPA, TAA and Ta-TPA-TAA (b); High-resolution N 1s XPS spectra of TAA (c) and Ta-TPA-TAA (d).



**Fig. S3** TEM images of precursor Ta-TPA-TAA (a), Ta-NCa<sub>650</sub> (b), Ta-NCa<sub>750</sub> (c) and Ta-NCa<sub>950</sub> (d).



Fig. S4 High resolution TEM images of Ta-NCa<sub>650</sub> (a), Ta-NCa<sub>750</sub> (b), Ta-NCa<sub>850</sub> (c), Ta-NCa<sub>950</sub> (d).



Fig. S5 SEM images of Ta-NCa<sub>650</sub> (a), Ta-NCa<sub>750</sub> (b), Ta-NCa<sub>850</sub> (c) and Ta-NCa<sub>950</sub> (d).



**Fig. S6** SEM image of Aa-NCa<sub>850</sub> (a), TEM image of Aa-NCa<sub>850</sub> (b), high resolution TEM image of Aa-NCa<sub>850</sub> (c).



Fig. S7 TGA and DTA curves of precursor Ta-TPA-TAA.



Fig. S8 N<sub>2</sub> adsorption/desorption isotherm (a) and the DFT pore size distribution (b) of Aa-NCa<sub>850</sub>.



**Fig. S9** High-resolution XPS spectra. Ta-NCa<sub>650</sub>: of C 1s (a), N 1s (d) and O 1s (g) ; Ta-NCa<sub>750</sub>: C 1s (b), N 1s (e) and O 1s (h); Ta-NCa<sub>950</sub>: C 1s (c), N 1s (f) and O 1s (i).



Fig. 10 XPS survey spectrum of Aa-NCa<sub>850</sub> (a); High-resolution XPS spectra of C 1s (b), O 1s (c) and N 1s (d) for Aa-NCa<sub>850</sub>.



**Fig. S11** Carbon, nitrogen and oxygen contents of Ta-NCa<sub>650</sub>, Ta-NCa<sub>750</sub>, Ta-NCa<sub>850</sub> and Ta-NCa<sub>950</sub> (a); The absolute content variations of oxidized N, graphitic N, pyrrolic N, and triazine N in Ta-NCa<sub>650</sub>, Ta-NCa<sub>750</sub>, Ta-NCa<sub>850</sub> and Ta-NCa<sub>950</sub> (b); The relative content variations of oxidized N, graphitic N, pyrrolic N, and triazine N in Ta-NCa<sub>650</sub>, Ta-NCa<sub>750</sub>, Ta-NCa<sub>850</sub> and Ta-NCa<sub>950</sub> (c).



**Fig. S12** Electrochemical performances of Ta-NCa<sub>650</sub>, Ta-NCa<sub>750</sub> and Ta-NCa<sub>950</sub> in 1 M H<sub>2</sub>SO<sub>4</sub>. CV curves of Ta-NCa<sub>650</sub>, Ta-NCa<sub>750</sub> and Ta-NCa<sub>950</sub> (e) at the scan rates from 5 to 100 mV s<sup>-1</sup>; Galvanostatic charge discharge profiles of Ta-NCa<sub>650</sub>, Ta-NCa<sub>750</sub> and Ta-NCa<sub>950</sub> (f) at the current densities from 0.5 to 10 A g<sup>-1</sup>.



**Fig. 13** CV curves of Aa-NCa<sub>850</sub> at the scan rates from 5 to 100 mV s<sup>-1</sup> in 1 M H<sub>2</sub>SO<sub>4</sub> (a); Galvanostatic charge discharge profiles of Aa-NCa<sub>850</sub> at the current densities from 0.5 to 30 A g<sup>-1</sup> in 1 M H<sub>2</sub>SO<sub>4</sub> (b and c); CV curves of Aa-NCa<sub>850</sub> at the scan rates from 5 to 100 mV s<sup>-1</sup> in 6 M KOH (d); Galvanostatic charge discharge profiles of Aa-NCa<sub>850</sub> at the current densities from 0.5 to 30 A g<sup>-1</sup> in 6 M KOH (e and f).

CV curves of Aa-NCa<sub>850</sub> display a quasi-rectangular shape and the CV curves keep almost unchanged with the increase of the scan rates from 5 to 100 mV s<sup>-1</sup>. At a high current of 30 A g<sup>-1</sup>, Ta-NCas have specific capacitances of 123 F g<sup>-1</sup> in H<sub>2</sub>SO<sub>4</sub> and 156 F g<sup>-1</sup> in KOH.



**Fig. S14** Galvanostatic charge discharge profiles of Ta-NCa<sub>650</sub> (a), Ta-NCa<sub>750</sub> (b), Ta-NCa<sub>850</sub> (c) and Ta-NCa<sub>950</sub> (d) at the current densities from 15 to 30 A  $g^{-1}$  in 1 M H<sub>2</sub>SO<sub>4</sub>.



**Fig. S15** Galvanostatic charge discharge profiles of Ta-NCa<sub>650</sub> (a), Ta-NCa<sub>750</sub> (b), Ta-NCa<sub>850</sub> (c) and Ta-NCa<sub>950</sub> (d) at 0.5 A g<sup>-1</sup> in 1 M H<sub>2</sub>SO<sub>4</sub> with the estimated EDLC and faradaic capacitance contributions being obtained from the discharge portions of differing slope.



**Fig. S16** Electrochemical performances of Ta-NCa<sub>650</sub>, Ta-NCa<sub>750</sub> and Ta-NCa<sub>950</sub> in 6 M KOH. CV curves of Ta-NCa<sub>650</sub> (a), Ta-NCa<sub>750</sub> (c) and Ta-NCa<sub>950</sub> (e) at the scan rates from 5 to 100 mV s<sup>-1</sup>; Galvanostatic charge discharge profiles of Ta-NCa<sub>650</sub> (b), Ta-NCa<sub>750</sub> (d) and Ta-NCa<sub>950</sub> (f) at the current density from 0.5 to 10 A g<sup>-1</sup>.



**Fig. S17** Galvanostatic charge discharge profiles of Ta-NCa<sub>650</sub> (a), Ta-NCa<sub>750</sub> (b), Ta-NCa<sub>850</sub> (c) and Ta-NCa<sub>950</sub> (d) at the current densities from 15 to 30 A  $g^{-1}$  in 6 M KOH.



**Fig. S18** Galvanostatic charge discharge profiles of Ta-NCa<sub>650</sub> (a), Ta-NCa<sub>750</sub> (b), Ta-NCa<sub>850</sub> (c) and Ta-NCa<sub>950</sub> (d) at 0.5 A g<sup>-1</sup> in 6 M KOH with the estimated EDLC and faradaic capacitance contributions being obtained from the discharge portions of differing slope.



Fig. S19 SEM images of the working electrode film: surface (a, b) and cross section (c) before 5000 cycles, surface (d, e) and cross section (f) after 5000 cycles.

The thickness of the working electrode film is about 91  $\mu$ m. No obvious morphology or thickness change can be observed to the working electrode film after 5000 cycles.



Fig. S20 Nyquist plots of Ta-NCas, The inset is magnified higher frequency region.



Fig. S21 FT-IR spectra of TPA, TAB, Ta-TPA-TAB.

In the FT-IR spectrum of Ta-TPA-TAB, characteristic peak at  $\sim$ 3320 cm<sup>-1</sup> derived from N-H as well as the peak at 1686 cm<sup>-1</sup> derived from C=O attenuates greatly, while absorption peak at 1578 cm<sup>-1</sup> (C=N) appears, providing strong evidence for the successful synthesis of Schiff-base polymer Ta-TPA-TAB.



**Fig. S22** XPS survey spectrum of Ta-NCb<sub>850</sub> (a); high-resolution XPS spectra of C 1s (b), O 1s (c) and N 1s (d) for Ta-NCb<sub>850</sub>.

The XPS spectra of Ta-NCb<sub>850</sub> is similar to that of Ta-NCa<sub>850</sub> (Figure 3a-d) and corresponding analysis is described in the main text.

| Samples    | Composition (a.t. %) |       |       |  |  |
|------------|----------------------|-------|-------|--|--|
| Sumples    | C N                  |       | 0     |  |  |
| TAA        | 75.35                | 24.65 | 0     |  |  |
| TPA        | 74.97                | 0     | 25.03 |  |  |
| Ta-TPA-TAA | 76.50                | 14.32 | 9.18  |  |  |

Table S1 surface elemental composition (atomic %) of TAA, TPA and Ta-TPA-TAA.

 Table S2 Surface area, porosity, surface elemental composition (atomic %) of samples.

|                       | S <sub>BET</sub> <sup>a</sup> | S <sub>micro</sub> <sup>b</sup> | $V_{total}$ °                   | Composition (a.t. %) <sup>d</sup> |      |      |
|-----------------------|-------------------------------|---------------------------------|---------------------------------|-----------------------------------|------|------|
|                       | $m^2 g^{-1}$                  | $m^2 g^{-1}$                    | cm <sup>3</sup> g <sup>-1</sup> | С                                 | N    | 0    |
| Ta-NCa <sub>650</sub> | 373                           | 332                             | 0.24                            | 84.50                             | 7.26 | 8.24 |
| Ta-NCa <sub>750</sub> | 440                           | 414                             | 0.29                            | 88.45                             | 5.90 | 7.64 |
| Ta-NCa <sub>850</sub> | 706                           | 654                             | 0.44                            | 91.59                             | 4.39 | 4.02 |
| Ta-NCa <sub>950</sub> | 950                           | 802                             | 0.54                            | 94.67                             | 1.51 | 3.82 |
| Aa-NCa <sub>850</sub> | 722                           | 715                             | 0.40                            | 91.07                             | 3.85 | 5.08 |
| Ta-NCb <sub>850</sub> | 896                           | 775                             | 0.51                            | 90.9                              | 3.74 | 5.36 |

<sup>a</sup> Specific surface area obtained from BET. <sup>b</sup> Surface area of micropores calculated by the t-plot method. <sup>c</sup> Total pore volume. <sup>d</sup> Atomic percent of elements obtained from XPS analysis.

| Electrode Materials   | Electrolyte                   | Capacitance (F g <sup>-1</sup> ) | Current Density          | Ref. |  |
|-----------------------|-------------------------------|----------------------------------|--------------------------|------|--|
| Ta-NCa <sub>850</sub> | 6 M KOH                       | 374.5                            | 0.5 A g <sup>-1</sup>    | This |  |
|                       | $1 \text{ M H}_2 \text{SO}_4$ | 362                              | $0.5 \mathrm{~A~g^{-1}}$ | work |  |
| TCNQ-CTF-800          | 1 M KOH                       | 383                              | $0.2 \ A \ g^{-1}$       | 5    |  |
| PMC-650               | $1 \text{ M H}_2\text{SO}_4$  | 312                              | 0.5 A g <sup>-1</sup>    | 6    |  |
| HFAC-2                | 1 M KOH                       | 525                              | $0.25 \text{ A g}^{-1}$  | 7    |  |
|                       | $1 \text{ M H}_2\text{SO}_4$  | 556                              | $0.25 \text{ A g}^{-1}$  |      |  |
| ABF-9%M               | 6 M KOH                       | 289                              | 0.5 A g <sup>-1</sup>    | 11   |  |
| TNNs-550              | $1 \text{ M H}_2\text{SO}_4$  | 298                              | $0.2 \ A \ g^{-1}$       | 13   |  |
| N-MCS-200             | 6 M KOH                       | 292                              | $1 \text{ A g}^{-1}$     | 28   |  |
| aNMC-0.5              | $1 \text{ M H}_2\text{SO}_4$  | 328                              | $0.5 \ A \ g^{-1}$       | 33   |  |
| TC                    | 6 M KOH                       | 286.6                            | $0.5 \ A \ g^{-1}$       | 34   |  |
| N/S-HCS               | 6 M KOH                       | 280                              | $1 \text{ A g}^{-1}$     | 35   |  |
| G/CNTs-200            | 6 M KOH                       | 202                              | $0.5 \ { m A g^{-1}}$    | 46   |  |
|                       |                               |                                  |                          |      |  |

 Table S3 Heteroatoms dopedcarbons as electrode materials of supercapacitors.