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Fig. S1. Photographs of static water contact angle of (a) untreated-carbon cloth and (b) the 

carbon cloth of pre-treated by oxygen plasma.

javascript:;


Fig. S2. A digital photograph of CC, CC@ZIF-67, CC@Co9S8, CC@PCNA and CC@Co9S8-Co4N.



Fig. S3. Low-magnification FE-SEM image of CC@ZIF-67.



Fig. S4. FE-SEM images of (a) ZIF-67, (b) Co9S8 and (d) Co9S8-Co4N. TEM images of (c) Co9S8 and 

(e) Co9S8-Co4N



Fig. S5. (a) FE-SEM, (b) TEM and (c) HR-TEM images of CC@Co9S8. 



Fig. S6. The FE-SEM images show the formation of hollow structure after (a, e, i) 0.5 h, (b, f, j) 

1 h, (c, g, k) 2 h and (d, h, l) 4 h of sulfidation reaction, respectively. The FE-SEM images of (a-

h) after sulfidation reaction and (i-l) CC@Co9S8.

During the sulfidation reaction, a series of changes take place subsequently. Firstly, the surface 

of ZIF-67 form a layer of Co-based sulfides by the S2- produced from TAA to react with Co ions. 

The thin shell can confine the further contact between the S2- and internal Co ions. Secondly, 

compared with S2- (184 pm), the Co ions (74 pm) has smaller ionic radius. With a mechanism 

similar to the Kirkendall effect, the internal Co ions released from ZIF-67 can penetrated the 

shell layer of sulfides to continue the reaction with external sulfur ions, resulting in the 

formation of a hollow structure.



Fig. S7. (a) FE-SEM images, (b) TEM images and (c) XRD patterns of CC@Co4N.



Fig. S8. Unit cells of Co9S8 and Co4N structures. 



Fig. S9. XRD patterns of Co and CC@Co9S8-Co4N. The standard XRD pattern for fcc Co (JCPDS 

No. 15-0806). 



Fig. S10. The XRD patterns of Co-based compounds obtained at different nitridation time (0, 

1, 2, 3 and 4 h).



Fig. S11. (a) XRD pattern of S/CC@Co9S8-Co4N, (b) TEM image of S/CC@Co9S8-Co4N.



Fig. S12. XPS survey spectra of CC@Co9S8 and CC@Co9S8-Co4N.



Fig. S13. Digital photo of cycled separators of S/CC, S/CC@Co9S8 and S/CC@Co9S8-Co4N.



Fig. S14. Digital photo that shows the lithium-sulfur batteries powering 30 LED device.



Fig. S15. Galvanostatic charge/discharge curves at current rate of 0.2, 0.5, 1, 2, 3, 4 and 5 C 

tested between 1.7~2.8 V of S/CC@Co9S8-Co4N.



Fig. S16. A comparison of S/CC@Co9S8-Co4N heterostructure with recently reported carbon 

cloth/fiber cathode materials in Lithium-sulfur batteries. (L1: Co3O4 nanoneedle array on 

carbon cloth,[1] L2: mesoporous SnO2 nanosheets on carbon nanofibers,[2] L3: TiO2 nanowires 

on carbon cloth,[3] L4: WS2 nanosheets on carbon cloth,[4] L5: TiO2 wrapping layer on carbon 

fiber,[5] L6: TiO2-grafted carbon paper[6]).



Fig. S17. FE-SEM images of CC@Co9S8-Co4N show the different sulfidation reaction after (a) 

0.5, (b) 1, (c) 2 and (d) 4 h.



Fig. S18. (a) TGA curve of S/CC@Co9S8-Co4N. (b-d) Digital images of the bend and torsion states 

of the S/CC@Co9S8-Co4N.



Fig. S19. Visual illustration of polysulfide entrapment of (a) S/CC@Co9S8, (b) S/CC and (c) 

S/CC@Co9S8-Co4N composites.    



Tab. S1. Co content and quantitative elemental analysis of the CC@Co9S8 and CC@Co9S8-Co4N.



Tab. S2. Performance comparison of CC@Co9S8-Co4N with other representative sulfur host 

materials for Li-S batteries in the literatures.

Ref. Sulfur host materials

Sulfur 
loading in 
electrodes 
(mg cm-2)

Current 
density

(1C=1675 
mAh g-1)

Cycle 
number

Decay 
per cycle

1.4~2.0  1 C 1000 0.030%
1.4~2.0 5 C 1000 0.027%

This 
work

S/CC@Co9S8-Co4N
6.1 0.2 C 200 0.084%

Ref. 
S2

C@SnO2/S 2.0 2 C 1000 0.024%

Ref. 
S3

CC/TiO2/S 1.5~2.0 1 C 700 0.045%

Ref. 
S5

TiO2-ACF 3.2 0.2 C 100 0.023%

Ref. 
S6

CP@TiO2-S 2.0 1 C 500 0.11%

Ref. 
S7

Co9S8–Celgard 2.0 1 C 1000 0.041%

Ref. 
S8

Co4N/S 1.5~2.0 2 C 300 0.01%

Ref. 
S9

S@Co/N-PCNSs 0.8~1.0 5 C 400 0.036%

Ref. 
S10

Activated CNF Sheets 2.4 C/3 500 0.088%

Ref. 
S11

GOPAA 0.8 0.5 C 100 0.22%



Tab. S3. The relative parameters of S/CC@Co9S8-Co4N at different current densities from 0.2 

C to 5 C.

ms/mg
Cs/mAh 

g-1 Ce/mAh g-1 I/mA V/v Em/Wh kg-1 Pm/W kg-1

0.2C 1.41 1657 230 0.47 2.10 342 700
0.5C 1.41 1268 176 1.18 2.08 259 1740
1 C 1.41 1197 166 2.36 2.05 241 3431
2 C 1.41 1043 145 4.72 2.00 205 6695
3 C 1.41 911 126 7.08 1.95 174 9791
4 C 1.41 756 105 9.44 1.90 141 12720
5 C 1.41 647 90 11.8 1.86 118 15565

ms: the mass of cathode electrodes with the diameter of 10 mm;

Cs: the discharge capacity in the different current densities of sulfur;

Ce: the discharge capacity in the different current densities of cathode;

I: the charge/discharge current of electrodes;

V: average voltage of discharge;

Em: specific energy density;

Pm: specific power density.

Note that specific energy density (Em) and power density (Pm) are calculated by the following 

equations: Em= V×Ce/ms, Pm=I×V/ms, C is the discharge capacity at different rates in Fig. 5c.
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