Highly stable lithium-sulfur batteries based on p-n heterojuctions embedded on hollow sheath carbon propelling polysulfides conversion

Han Zhang,^a Zongbin Zhao,^{*,a} Ya-Nan Hou,^a Yongchao Tang,^a Jingjing Liang,^a Xuguang Liu,^b Zhichao

Zhang,^c Xuzhen Wang^{a,c} and Jieshan Qiu*,^a

- ^a State Key Lab of Fine Chemicals, Liaoning Key Lab for Energy Materials and Chemical Engineering, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
- ^b Key Lab of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China

^c School of Chemistry, Dalian University of Technology, Dalian 116024, China.

*E-mail addresses: zbzhao@dlut.edu.cn (Z. Zhao), jqiu@dlut.edu.cn (J. Qiu).

Fig. S1. Photographs of static water contact angle of (a) untreated-carbon cloth and (b) the carbon cloth of pre-treated by oxygen plasma.

Fig. S2. A digital photograph of CC, CC@ZIF-67, CC@Co₉S₈, CC@PCNA and CC@Co₉S₈-Co₄N.

Fig. S3. Low-magnification FE-SEM image of CC@ZIF-67.

Fig. S4. FE-SEM images of (a) ZIF-67, (b) Co_9S_8 and (d) Co_9S_8 - Co_4N . TEM images of (c) Co_9S_8 and

(e) Co₉S₈-Co₄N

Fig. S5. (a) FE-SEM, (b) TEM and (c) HR-TEM images of $CC@Co_9S_8$.

Fig. S6. The FE-SEM images show the formation of hollow structure after (a, e, i) 0.5 h, (b, f, j) 1 h, (c, g, k) 2 h and (d, h, l) 4 h of sulfidation reaction, respectively. The FE-SEM images of (a-h) after sulfidation reaction and (i-l) $CC@Co_9S_8$.

During the sulfidation reaction, a series of changes take place subsequently. Firstly, the surface of ZIF-67 form a layer of Co-based sulfides by the S²⁻ produced from TAA to react with Co ions. The thin shell can confine the further contact between the S²⁻ and internal Co ions. Secondly, compared with S²⁻ (184 pm), the Co ions (74 pm) has smaller ionic radius. With a mechanism similar to the Kirkendall effect, the internal Co ions released from ZIF-67 can penetrated the shell layer of sulfides to continue the reaction with external sulfur ions, resulting in the formation of a hollow structure.

Fig. S7. (a) FE-SEM images, (b) TEM images and (c) XRD patterns of $CC@Co_4N$.

Fig. S8. Unit cells of Co_9S_8 and Co_4N structures.

Fig. S9. XRD patterns of Co and CC@Co₉S₈-Co₄N. The standard XRD pattern for fcc Co (JCPDS No. 15-0806).

Fig. S10. The XRD patterns of Co-based compounds obtained at different nitridation time (0,

1, 2, 3 and 4 h).

Fig. S11. (a) XRD pattern of $S/CC@Co_9S_8-Co_4N$, (b) TEM image of $S/CC@Co_9S_8-Co_4N$.

Fig. S12. XPS survey spectra of $CC@Co_9S_8$ and $CC@Co_9S_8$ -Co₄N.

Fig. S13. Digital photo of cycled separators of S/CC, S/CC@Co₉S₈ and S/CC@Co₉S₈-Co₄N.

Fig. S14. Digital photo that shows the lithium-sulfur batteries powering 30 LED device.

Fig. S15. Galvanostatic charge/discharge curves at current rate of 0.2, 0.5, 1, 2, 3, 4 and 5 C tested between $1.7^{2.8}$ V of S/CC@Co₉S₈-Co₄N.

Fig. S16. A comparison of S/CC@Co₉S₈-Co₄N heterostructure with recently reported carbon cloth/fiber cathode materials in Lithium-sulfur batteries. (L1: Co₃O₄ nanoneedle array on carbon cloth,^[1] L2: mesoporous SnO₂ nanosheets on carbon nanofibers,^[2] L3: TiO₂ nanowires on carbon cloth,^[3] L4: WS₂ nanosheets on carbon cloth,^[4] L5: TiO₂ wrapping layer on carbon fiber,^[5] L6: TiO₂-grafted carbon paper^[6]).

Fig. S17. FE-SEM images of CC@Co₉S₈-Co₄N show the different sulfidation reaction after (a)

0.5, (b) 1, (c) 2 and (d) 4 h.

Fig. S18. (a) TGA curve of S/CC@Co $_9$ S $_8$ -Co $_4$ N. (b-d) Digital images of the bend and torsion states

of the S/CC@Co₉S₈-Co₄N.

Fig. S19. Visual illustration of polysulfide entrapment of (a) S/CC@Co $_9S_8$, (b) S/CC and (c)

S/CC@Co₉S₈-Co₄N

composites.

Sampla	lcp Co(%)	Element					
Sample		C(wt%)	H(wt%)	N(wt%)	S(wt%)	O(wt%)	
CC@Co ₉ S ₈	5.41	73.63	0.23	1.25	19.86	0.05	
CC@Co ₉ S ₈ -Co ₄ N	4.50	71.41	5.33	2.53	12.96	0.07	

 $\textbf{Tab. S1.} \ Co\ content\ and\ quantitative\ elemental\ analysis\ of\ the\ CC@Co_9S_8\ and\ CC@Co_9S_8-Co_4N.$

Ref.		Sulfur loading in	Current density	Cycle	Decay
	Sulfur host materials	electrodes	(1C=1675	number	per cycle
		(mg cm ⁻²)	mAh g⁻¹)		
This work		1.4~2.0	1 C	1000	0.030%
	S/CC@Co ₉ S ₈ -Co ₄ N	1.4~2.0	5 C	1000	0.027%
		6.1	0.2 C	200	0.084%
Ref.	$C \otimes Sn O_{2}/S$	2.0	20	1000	0.024%
S2	C@31102/3	2.0	20	1000	0.02470
Ref.		1 5~2 0	1 C	700	0.045%
S3		1.5 2.0	10		
Ref.	TiO ₂ -ACF	3.2	020	100	0 023%
S5		5.2	0.2 0	200	0102070
Ref.	CP@TiO ₂ -S	2.0	1 C	500	0.11%
S6					0.22/0
Ref.	Co _o S ₂ –Celgard	2.0	1 C	1000	0.041%
S7		-	-		
Ref.	Co₄N/S	1.5~2.0	2 C	300	0.01%
S8					
Ref.	S@Co/N-PCNSs	0.8~1.0	5 C	400	0.036%
S9	C ,				
Ref.	Activated CNF Sheets	2.4	C/3	500	0.088%
S10			, -		
Ref.	GOPAA	0.8	0.5 C	100	0.22%
S11					

Tab. S2. Performance comparison of $CC@Co_9S_8-Co_4N$ with other representative sulfur host materials for Li-S batteries in the literatures.

Tab. S3. The relative parameters of S/CC@Co₉S₈-Co₄N at different current densities from 0.2

	m _s /mg	C₅/mAh g⁻¹	C _e /mAh g⁻¹	I/mA	V/v	E _m /Wh kg⁻¹	P _m /W kg⁻¹
0.2C	1.41	1657	230	0.47	2.10	342	700
0.5C	1.41	1268	176	1.18	2.08	259	1740
1 C	1.41	1197	166	2.36	2.05	241	3431
2 C	1.41	1043	145	4.72	2.00	205	6695
3 C	1.41	911	126	7.08	1.95	174	9791
4 C	1.41	756	105	9.44	1.90	141	12720
5 C	1.41	647	90	11.8	1.86	118	15565

C to 5 C.

 m_s : the mass of cathode electrodes with the diameter of 10 mm;

C_s: the discharge capacity in the different current densities of sulfur;

 C_e : the discharge capacity in the different current densities of cathode;

I: the charge/discharge current of electrodes;

V: average voltage of discharge;

E_m: specific energy density;

P_m: specific power density.

Note that specific energy density (E_m) and power density (P_m) are calculated by the following

equations: $E_m = V \times C_e/m_s$, $Pm = I \times V/m_s$, C is the discharge capacity at different rates in Fig. 5c.

References

- S1 Z. Chang, H. Dou, B. Ding, J. Wang, Y. Wang, X. Hao, D. R. MacFarlane, J. Mater. Chem. A, 2017, 5, 250.
- M. Wang, L. Fan, X. Wu, D. Tian, J. Cheng, Y. Qiu, H. Wu, B. Guan, N. Zhang, K. Sun, Y. Wang, J. Mater. Chem. A, 2017, S2 **5**, 19613.
- S3 T. Lei, Y. Xie, X. Wang, S. Miao, J. Xiong, C. Yan, Small, 2017, 13, 1701013.
- T. Lei, W. Chen, J. Huang, C. Yan, H. Sun, C. Wang, W. Zhang, Y. Li, J. Xiong, *Adv. Energy Mater.*, 2017, **7**, 1601843. K. Y. Xie, K. Zhang, Y. Z. Han, K. Yuan, Q. Song, J. G. Wang, C. Shen, X. R. Liu, B. Q. Wei, *Electrochim. Acta*, 2016, **210**, S4
- S5 415.
- S6 Z. Zhang, Q. Li, K. Zhang, W. Chen, Y. Lai, J. Li, J. Power Sources, 2015, 290, 159.
- J. He, Y. Chen and A. Manthiram, Energy Environ. Sci, 2018, 11, 2560-2568. S7
- S8 D. R. Deng, F. Xue, Y. J. Jia, J. C. Ye, C. D. Bai, M. S. Zheng and Q. F. Dong, ACS Nano, 2017, 11, 6031-6039.
- S9 S. Liu, J. Li, X. Yan, Q. Su, Y. Lu, J. Qiu, Z. Wang, X. Lin, J. Huang, R. Liu, B. Zheng, L. Chen, R. Fu and D. Wu, Adv. Mater., 2018, 30, 1706895.
- L. Qie, C. Zu and A. Manthiram, Adv. Energy Mater., 2016, 6, 1502459. S10
- G. Xu, Q.-b. Yan, A. Kushima, X. Zhang, J. Pan and J. Li, Nano Energy, 2017, 31, 568-574. S11