Supporting information

$\mbox{La}(\mbox{OH})_3$ nanosheet supported CoPt nanoparticles: Highly efficient and

magnetically recyclable catalyst for hydrogen production from hydrous

hydrazine

Kun Wang,^a Qilu Yao,^a Shaojun Qing^b and Zhang-Hui Lu^{*a}

^aInstitute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China; ^bInstitute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030000, China

*Corresponding author: E-mail: luzh@jxnu.edu.cn

Scheme S1. The mechanism of N_2H_4 decoposition on CoPt NPs surface.

Fig. S1 Powder XRD patterns of the as-synthesized $La(OH)_3$, $Co/La(OH)_3$, $Pt/La(OH)_3$, $CoPt/La(OH)_3$, and free CoPt NPs

As shown in Fig. S1, four obvious characterized peaks located at 15.6° , 27.9° , 39.5° and 48.5° are observed in CoPt/La(OH)₃, which are assigned to hexagonal La(OH)₃ (PDF# 36-1481). No obvious peak belongs to CoPt NPs appears in CoPt/La(OH)₃, which can be explained as good dispersion of the ultrafine CoPt NPs on La(OH)₃ surface and/or superposition of CoPt and La(OH)₃ peaks. It is noted that the peak located at 39.5° is obviously enhanced in CoPt/La(OH)₃ and Pt/La(OH)₃ as compared to that of pure La(OH)₃ owing to the superposition of Pt (111) and La(OH)₃ peaks. To eliminate the disturbance of La(OH)₃, pure CoPt NPs were prepared for characterization. The XRD pattern of free CoPt NPs has a crystalline peak of CoPt alloy located at 39.9°, which is between the characteristic peaks of cubic Pt (111) plane (PDF# 04-0802) and cubic Co (111) plane (PDF# 15-0806).

Fig. S2 Nitrogen adsorption-desorption isotherms of the (a) naonosheet-, (b) nanoshpere-, (c) nanorod-, (d) nanobelt-like $La(OH)_3$.

Fig. S3 Nitrogen adsorption-desorption isotherms of the CoPt/La(OH)₃-nanosheet and La(OH)₃-nanosheet.

Fig. S4 CO₂-TPD mass spectra of the pure CoPt NPs and CoPt/La(OH)₃.

Fig. S5 (a) The survey XPS spectrum and (b) XPS spectrum of La 3d of CoPt/La(OH)₃.

Fig. S6 Photograph of the (a) $CoPt/La(OH)_3$ and (b) after five recycle tests $CoPt/La(OH)_3$ after the magnetic separation.

Fig. S7 Time course plots for decomposition of N₂H₄ (400 mM, 5 mL) over CoPt/La(OH)₃ with different molar contents of Pt in the presence of NaOH (3.5 M) at 323 K ($n_{\text{CoPt}}/n_{\text{N}_2\text{H}_4\text{·H}_2\text{O}} = 0.05$).

Fig. S8 (a) Time course plots and (b) NaOH dependence of H₂ selectivity and the corresponding TOF values for dehydrogenation of N₂H₄ (400 mM, 5 mL) over CoPt/La(OH)₃ with different amounts of NaOH at 323 K ($n_{CoPt}/n_{N_2H_4:H_2O} = 0.05$).

Fig. S9 Time course plots for decomposition of N₂H₄ (400 mM, 5 mL) over CoPt NPs and CoPt/La(OH)₃ without NaOH at 323 K ($n_{CoPt}/n_{N_2H_4 \cdot H_2O} = 0.05$).

Fig. S10 Typical SEM images of the as-synthesized (a) naonosheet-, (b) nanoshpere-,

(c) nanorod-, (d) nanobelt-like $La(OH)_3$.

Fig. S11 Time course plots for decomposition of N₂H₄ (400 mM, 5 mL) over CoPt supported by different supports in the presence of NaOH (3.5 M) at 323 K $(n_{\text{CoPt}}/n_{\text{N_2H_4:H_2O}} = 0.05)$.

Fig. S12 (a) Time course plots for decomposition of N₂H₄ (400 mM, 5 mL) over NiPt/La(OH)₃ in the presence of NaOH (3.5 M) at different temperatures $(n_{\text{NiPt}}/n_{\text{N_2H_4:H_2O}} = 0.05)$; (b) The corresponding Arrhenius plot.

Fig. S13 (a) Time course plots for decomposition of N₂H₄ (400 mM, 5 mL) over pure CoPt NPs in the presence of NaOH (3.5 M) at different temperatures ($n_{CoPt}/n_{N_2H_4:H_2O} = 0.05$); (b) The corresponding Arrhenius plot.

Fig. S14 Reusability test for decomposition of N₂H₄ (400 mM, 5 mL) over NiPt/La(OH)₃ with NaOH (3.5 M) at 323 K ($n_{\text{NiPt}}/n_{\text{N_2H_4} \cdot \text{H_2O}} = 0.05$).

Fig. S15 Typical SEM (a) and TEM (b) image of the CoPt/La(OH) $_3$ after five runs.

Fig. S16 Powder XRD patterns of the as-synthesized CoPt/La(OH)₃ catalyst (a) before and (b) after five runs.

Catalyst	Co (wt%)	Pt (wt%)	Co/Pt	
			(molar ratio)	
Со	12.47	-	-	
$Co_{0.9}Pt_{0.1}$	11.79	4.38	8.89	
$Co_{0.7}Pt_{0.3}$	8.00	11.51	2.29	
$Co_{0.5}Pt_{0.5}$	5.73	15.62	1.02	
$Co_{0.4}Pt_{0.6}$	4.32	21.64	0.65	
Co _{0.3} Pt _{0.7}	3.01	23.90	0.42	
$Co_{0.1}Pt_{0.9}$	1.02	30.55	0.11	
Pt	-	32.77	-	

 Table S1 ICP-AES results of different catalysts.

Catalyst	Temp.	Selectivity	TOF	Ea	Ref.
	(К)	(100%)	(h-1)	(kJ / mol)	
NiPt/Ce ₂ O ₃	298	100	28.1	42.3	S1
NiPt/MIL-101	303	100	140	48.4	S2
NiPt/PDA-rGO	303	100	903	33.39	S3
NiCo/NiO-CoO _x	295	99	5.49	45.2	S4
Co _{0.65} Pt _{0.30} (CeO _x) _{0.05}	298	72.1	194.8	-	S5
Colr/γ-Al ₂ O ₃	298	100	27.76	40.8	S6
NiMoB-La(OH) ₃	323	100	13.3	55.1	S7
Pt _{0.5} Ni _{0.5} /NGNs-850	323	100	2116	32.28	S8
Ni ₈₄ Pt ₁₆ /graphene	323	100	415	40.4	S9
Ni ₃ Pt ₇ /graphene	323	100	415	49.36	S10
Rh _{4.4} Ni/graphene	298	100	28	-	S11
Pt ₆₀ Ni ₄₀ -CNDs	323	100	170	43.9	S12
Nilr _{0.059} /Al ₂ O ₃ -HT	303	99	12.4	49.3	S13
NiPt _{0.057} / Al ₂ O ₃ -HT	303	97	16.5	34	S14
Ni _{1.5} Fe _{1.0} /(MgO) _{3.5}	299	99	11	-	S15

Table S2. Catalytic activities of different catalysts for the dehydrogenation ofhydrous hydrazine.

PtNi/C	323	100	210	55.3	S16
NiPt/La(OH) ₃	303	100	923	53.2	This work
NiPt/La(OH) ₃	323	100	2400	53.2	This work
CoPt/La(OH)₃	303	100	734.2	45.2	This work
CoPt/La(OH) ₃	323	100	2400	45.2	This work

References

- (S1) H. L. Wang, J. M. Yan, Z. L. Wang, O. Song-Il and Q. Jiang, J. Mater. Chem. A, 2013, 1, 14957-14962.
- (S2) Z. J. Zhang, S. L. Zhang, Q. L. Yao, X. S. Chen and Z. H. Lu, *Inorg. Chem.*, 2017, **56**, 11938-11945.
- (S3) F. Z. Song, Q. L. Zhu and Q. Xu, J. Mater. Chem. A, 2015, 3, 23090-23094.
- (S4) D. D. Wu, M. Wen, X. J. Lin, Q. S. Wu, C. Gu and H. X. Chen, *J. Mater. Chem. A*, 2016, *4*, 6595-6602.
- (S5) O. Song-II, J. M. Yan, H. L. Wang, Z. L. Wang and Q. Jiang, *Int. J. Hydrogen Energy*, 2014, **39**, 3755-3761.
- (S6) N. Firdous, N. K. Janjua, I. Qazi and M. H. Sarwar Wattoo, *Int. J. Hydrogen Energy*, 2016, **4**, 984-955.
- (S7) J. Zhang, Q. Kang, Z. Yang, H. Dai, D. Zhuang and P. Wang, J. Mater. Chem. A, 2013, 1, 11623-11628.
- (S8) A. Kumar, X. C. Yang and Q. Xu, J. Mater. Chem. A, 2018, 10.1039/C8TA09003C.
- (S9) Y. S. Du, J. Su, W. Luo and G. Z. Cheng, ACS Appl. Mater. Interfaces, 2015, 7, 1031-1034.
- (S10) N. Cao, L. Yang, C. Du, J. Su, W. Luo and G. Z. Cheng, *J. Mater. Chem. A*, 2014, **2**, 14344-14347.
- (S11) J. Wang, X. B. Zhang, Z. L. Wang, L. M. Wang and Y. Zhang, *Energy Environ. Sci.*, 2012, **5**, 6885-6888.

- (S12) J. K. Sun and Q. Xu, *ChemCatChem*, 2015, **7**, 526-531.
- (S13) L. He, Y. Q. Huang, X. Y. Liu, L. Li, A. Q. Wang, X. D. Wang, Y. C. Mou and T. Zhang, *Appl. Catal. B*, 2014, **147**, 779-788.
- (S14) L. He, Y. Q. Huang, A. Q. Wang, Y. Liu, X. Y. Liu, X. W. Chen, J. J. Delgado, X. D. Wang and T. Zhang, *J. Catal.*, 2013, **298**, 1-9.
- (S15) W. Gao, C. M. Li, H. Chen, M. Wu, S. He, M. Wei, D. G. Evans and X. Duan, *Green Chem.*, 2014, **16**, 1560-1568.
- (S16) S. N. Oliaee, C. L. Zhang, S. Y. Hwang, H. M. Cheung and Z. M. Peng, J. Phys. Chem. C, 2016, **120**, 9764-9772.