Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Supplemental Information

Unique nanosheet-nanowire structured CoMnFe layered triple

hydroxide arrays as self-supporting electrodes for high-efficiency

oxygen evolution reaction

Meichen Guo, Lingxi Zhou, Yao Li, Qiaoji Zheng, Fengyu Xie, Dunmin Lin*

College of Chemistry and Materials Science, Sichuan Normal University, Chengdu

610066, China

Figure S1. Photograph and SEM image of Ni foam.

^{*} Corresponding author: Email:ddmd222@sicnu.edu.cn (Dunmin Lin); Fax: <u>+86 28 84760802</u> Tel: <u>+86 28 84760802</u>

Figure S2. The illustration of the Teflon autoclave apparatus to synthesize materials on

Ni foam substrate.

Figure S3.SEM images of (a) Co_4Mn_1 LDH/NF, (b) Co_4Mn_2 LDH/NF and (c) Co_4Mn_3

LDH/NF samples; (c) LSV curves, (e) Tafel plots and (f) corresponding contrast of

Co₄Mn₁ LDH/NF, Co₄Mn₂ LDH/NF and Co₄Mn₃ LDH/NF.

Figure S4. (a)SEM image of CCH/NF; (b) LSV curves of CCH/NF, Co₄Mn₁LDH/NF

and Co₄Mn₁Fe₃ LTH/NF.

Figure S5.SEM image of Co₄Mn₁Fe₃ LTH/NF.

Figure S6. The EDS elemental analysis of Co₄Mn₁Fe₃ LTH/NF.

treatment time at $J=100 \text{ mA cm}^{-2}$.

Figure S8. XPS survey spectra of $Co_4Mn_1Fe_3$ LTH/NF.

Figure S9. SEM images of Co₄Mn₁Fe₃ LTH/NF containing different NH₄F amounts.

Figure S10. XRD data of (a) Co₄Mn₁ LDH/NF and (b) Co₄Mn₁Fe₁ LTH/NF.

Figure S11. LSV curves of Co₄Mn₁Fe₃ LTH/NF containing 10 mmol NH₄F or not.

Table S1. Comparison of catalytic performance of $Co_4Mn_1Fe_3$ LTH/NF to recently

reported hig	h performance	e LDH-based	OER elect	rocatalysts
--------------	---------------	-------------	-----------	-------------

LDH-based electrocatalysts	Electrolyte	Current density	Overpotential	Tafel slope	reference
		[mA cm ⁻²]	for OER [mV]	[mV decade-1]	
NiFe LDHs	1M KOH	10	≈350	64	[S1]
NiV LDHs	1M KOH	10	≈310	50	[S1]
CoMn LDHs	1M KOH	10	324	43	[82]
NiFe-LDH HMS	1M KOH	10	239	53	[83]
Cu@NiFe LDHs	1M KOH	10	199	27.8	[84]
NiFe-LDH/NiCo ₂ O ₄ /NF	1M KOH	50	350	53	[85]
NiCo ₂ S ₄ @NiFe-LDH/NF	1M KOH	60	201	46.3	[86]
FeOOH/NiFe-LDH/NF	1M KOH	10	208	-	[87]
NiFe:Pi/NiFe-LDH/CFP	1M KOH	10	290	38	[S8]

CoSe/NiFe-LDH/EG	1M KOH	150	270	57	[89]
NiFeCo LDHs	1M KOH	10	220	42	[S10]
NiFeMn LDHs	1M KOH	20	289	47	[S11]
NiCoFe LTHs/CFC	1M KOH	10	239	32	[S12]
MoO ⁴⁻ /NiFe LDHs	1M KOH	10	280	40	[S13]
PO ₄ ³⁻ /NiFe LDH	1M KOH	10	≈260	≈42.1	[S14]
HPO ₃ ^{2–} /NiFe LDH	1M KOH	10	≈270	≈40.6	[S14]
H ₂ PO ₂ ³⁻ /NiFe LDH	1M KOH	10	≈240	≈37.7	[S14]
CO ₃ ^{2–} /NiFe LDH	1M KOH	10	≈330	≈44.3	[S14]
Exfoliated NiFe LDHs	1M KOH	10	300	40	[\$15]
Exfoliated NiCo LDH	1M KOH	10	330	41	[\$15]
Exfoliated CoCo LDH	1M KOH	10	350	45	[815]
Exfoliated NiCo LDH/CP	1M KOH	10	300	40	[S16]
H ₂ O-plasma exfoliated	1M KOH	10	290	36	[S17]
CoFe LDHs					
Ar-CoFe LDHs	1M KOH	10	266	37.6	[S18]
Defect-rich ultrathin CoFe	1M KOH	10	300	40	[S19]
LDHs					
NiFe LDHs/NF	1M NaOH	10	240	-	[820]
Ni₅Fe LDH@NF	1М КОН	10	210	59	[\$21]
NiFe LDHs/CNTs	1M KOH	5	≈250	31	[822]
CNF/Fe-doped Ni LDH	1M KOH	10	220	34	[823]
NiFe-rGO LDH hybrid	1M KOH	10	206	39	[824]
nNiFe LDH/NGF	0.1M KOH	10	337	45	[825]
CoAl LDH/3DGN	1M KOH	10	252	36	[826]
NiFe LDH-NS@DG hybrid	1M KOH	10	210	52	[\$27]
CQD/NiFe LDH hybrid	1M KOH	10	≈235	30	[S28]
Co ₄ Mn ₁ Fe ₃ LDH/NF	1M KOH	10	200	55	This work

Sample	Content (%) (Co, Mn, Fe)	Atomic ratio (Co: Mn: Fe)
Co ₄ Mn ₁ LDH/NF	11.87%, 2.58%, 0.00%	0.81: 0.19: 0
Co ₄ Mn ₁ Fe ₁ LTH/NF	7.42%, 1.15%, 1.68%	0.71: 0.12: 0.17
Co ₄ Mn ₁ Fe ₂ LTH/NF	7.62%, 1.35%, 2.15%	0.67: 0.13: 0.20
Co ₄ Mn ₁ Fe ₃ LTH/NF	7.01%, 0.77%, 3.67%	0.60: 0.07: 0.33
Co ₄ Mn ₁ Fe ₄ LTH/NF	8.75%, 1.45%, 9.60%	0.43: 0.07: 0.50

References

- [S1] K. Fan, H. Chen, Y. F. Ji, H. Huang, P. M. Claesson, Q. Daniel, B. Philippe, H. Rensmo, F. S. Li, Y. Luo and L. C. Sun, Nat. Commun., 2016, 7, 11981.
- [S2] F. Song and X. L. Hu, J. Am. Chem. Soc, 2014, 136, 16481-16484.
- [S3] C. Zhang, M. F. Shao, L. Zhou, Z. H. Li, K. M. Xiao and M. Wei, ACS Appl. Mater. Interfaces, 2016, 8, 33697-33703.
- [S4] Y. Luo, H. Q. Zhou, J. Y. Sun, F. Qin, F. Yu, J. M. Bao, Y. Yu, S. Chen and Z. F. Ren, Energy Environ. Sci., 2017, 10, 1820-1827.
- [S5] Z. Q. Wang, S. Zeng, W. H. Liu, X. W. Wang, Q. W. Li, Z. G. Zhao and F. X. Geng, ACS Appl. Mater. Interfaces, 2017, 9, 1488-1495.
- [S6] J. Liu, J. S. Wang, B. Zhang, Y. J. Ruan, L. Lv, X. Ji, K. Xu, L. Miao and J. J. Jiang, ACS Appl. Mater. Interfaces, 2017, 9, 15364-15372.

- [S7] J. Chi, H. M. Yu, B. W. Qin, L. Fu, J. Jia, B. L. Yi and Z. G. Shao, ACS Appl. Mater. Interfaces, 2016, 9, 464-471.
- [S8] Y. B. Li and C. Zhao, ACS Catal., 2017, 7, 2535-2541.
- [S9] Y. Hou, M. R. Lohe, J. Zhang, S. H. Liu, X. D. Zhuang and X. L. Feng, Energ. Environ. Sci., 2016, 9, 478-483.
- [S10]X. Long, S. Xiao, Z. L. Wang, X. L. Zheng and S. H. Yang, Chem. Commun., 2015, 51, 1120-1123.
- [S11]Z. Y. Lu, L. Qian, Y. Tian, Y. P. Li, X. M. Sun and X. Duan, Chem. Commun., 2016, 52, 908-911.
- [S12]A.-L. Wang, H. Xu and G.-R. Li, ACS Energy Lett., 2016, 1, 445-453.
- [S13]N. Han, F. P. Zhao and Y. G. Li, J. Mater. Chem. A, 2015, 3, 16348-16353.
- [S14]M. Luo, Z. Cai, C. Wang, Y. M. Bi, L. Qian, Y. C. Hao, L. Li, Y. Kuang, Y. P. Li, X. D. Lei, Z. Y. Huo, W. Liu, H. L. Wang, X. M. Sun and X. Duan, Nano Res., 2017, 10, 1732-1739.
- [S15]F. Song and X. L. Hu, Nat. Commun., 2014, 5, 4477.
- [S16] H. F. Liang, F. Meng, M. Cabán-Acevedo, L. S. Li, A. Forticaux, L. C. Xiu, Z.C. Wang and S. Jin, Nano Lett., 2015, 15, 1421-1427.
- [S17]R. Liu, Y. Y. Wang, D. D. Liu, Y. Q. Zou and S. Y. Wang, Adv. Mater., 2017, 29, 1701546.
- [S18]Y. Y. Wang, Y. Q. Zhang, Z. Q. Liu, C. Xie, S. Feng, D. D. Liu, M. F. Shao and S. Y. Wang, Angew. Chem., Int. Ed., 2017, 56, 5867-5871.

- [S19]P. F. Liu, S. Yang, B. Zhang and H. G. Yang, ACS Appl. Mater. Interfaces, 2016, 8, 34474-34481.
- [S20]J. S. Luo, J.-H. Im, M. T. Mayer, M. Schreier, M. K. Nazeeruddin, N.-G. Park, S.D. Tilley, H. J. Fan and M. Grätzel, Science, 2014, 34, 1593-1596.
- [S21]Y. Zhang, Q. Shao, Y. C. Pi, J. Guo and X. Q. Huang, Small, 2017, 13, 1700355.
- [S22]M. Gong, Y. G. Li, H. L. Wang, Y. Y. Liang, J. Z. Wu, J. G. Zhou, J. Wang, T. Regier, F. Wei and H. J. Dai, J. Am. Chem. Soc, 2013, 13, 8452-8455.
- [S23]D. D. Zhao, K. Z. Jiang, Y. C. Pi and X. Q. Huang, ChemCatChem, 2017, 9, 84-88.
- [S24]X. Long, J. K. Li, S. Xiao, K. Y. Yan, Z. L. Wang, H. N. Chen and S. H. Yang, Angew. Chem., 2014, 126, 7714-7718.
- [S25]C. Tang, H. S. Wang, H. F. Wang, Q. Zhang, G. L. Tian, J. Q. Nie and F. Wei, Adv. Mater., 2015, 27, 4516-4522.
- [S26]J. F. Ping, Y. X. Wang, Q. P. Lu, B. Chen, J. Z. Chen, Y. Huang, Q. L. Ma, C. L.Tan, J. Yang, X. H. Cao, Z. J. Wang, J. Wu, Y. B. Ying and H. Zhang, Adv. Mater., 2016, 28, 7640-7645.
- [S27]Y. Jia, L. Z. Zhang, G. P. Gao, H. Chen, B. Wang, J. Z. Zhou, M. T. Soo, M. Hong, X. C. Yan, G. G. Qian, J. Zou, A. J. Du and X. D. Yao, Adv. Mater., 2017, 3, 1700017.

[S28] D. Tang, J. Liu, X. Y. Wu, R. H. Liu, X. Han, Y. Z. Han, H. Huang, Y. Liu and Z. H. Kang, ACS Appl. Mater. Interfaces, 2014, 6, 7918-7925.