Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Supporting Information (SI)

Grain Boundaries Modified Uniformly-Conjoint Metal/Oxides via Binder Strategy as Efficient Bifunctional Electrocatalysts

Rongrong Zhang, Li Wang, Yu-Hang Ma, Lun Pan,* Ruijie Gao, Ke Li, Xiangwen Zhang, Ji-Jun Zou

Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.

Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China.

Corresponding author email address:

E-mail: panlun76@tju.edu.cn (L. Pan)

Table of contents

	Captions	Page	
Figure S1	XRD of CoNim-Gly and CoNi-Gly.	S 3	
Figure S2	Schematic of melamine lie in interlamination of glyceric metal precursor (CoNim-Gly).	S 3	
Figure S3	IR of CoNim-Gly and CoNi-Gly.	S4	
Figure S4	TG and DTG in argon flow of CoNim-Gly and CoNi-Gly.		
Figure S5	5 TEM of CoNi.		
Figure S6	HRTEM of CoNi.	S 5	
Figure S7	TEM of CoNi-melamine with different Co/Ni ratio. Com and Nim are synthesized with only one metal source of cobalt and nickel respectively.	S 5	
Figure S8	XRD of CoNim and CoNi.	S6	
Figure S9	The linear combination fitting (LCF) of XANES for CoNi which main component is metal.	S 6	
Figure S10	The fine X-ray photoelectron spectroscopy (XPS) of CoNi and CoNim, fitting of O 1s.	S7	
Table S1	Elements concentration of CoNim and CoNi by XPS.	S8	
Figure S11	The XANES of Co K-edge for CoNim.	S9	
Figure S12	The XANES of Ni K-edge for CoNim.	S9	
Figure S13	XRD of Com and Nim.	S10	
Figure S14	RRDE tests for electron transfer number of Pt/C (a), IrO_2 (b), and RuO_2 (c).	S11	
Figure S15	LSV of IrO_2 (a) and RuO_2 (b) before and after 2000 cycle tests.	S12	
Figure S16	HRTEM of CoNim after OER stability test (washed from electrode).	S13	
Figure S17	HRTEM of CoNim after ORR stability test (washed from electrode)	S13	
Figure S18	Optimized adsorption structures of metal and metal oxides with (100) crystal faces.	S14	
Figure S19	Optimized OH adsorption structures of (100) crystal faces with composite clusters.	S15	
Figure S20	Optimized O ₂ adsorption structures of (100) crystal faces with composite clusters.	S16	
Figure S21	Galvanostatic (10 mA/cm ²) charge-discharge cycling curves for $Pt/C-IrO_2$ (a) and CoNim (b).	S17	
Figure S22	(a,b) Co 2p and Ni 2p XPS spectra of CoNim surface after OER stability test. In Co 2p	S18	
	and Ni 2p XPS, the surface Co, Co ²⁺ and Ni, Ni ²⁺ were oxidized to Co ³⁺ and Ni ³⁺ .		
//	XAFS fit specific information.	S19	
//	References	S20	

Figure S1. XRD of CoNim-Gly and CoNi-Gly.

Figure S2. Schematic of melamine lie in interlamination of glyceric metal precursor (CoNim-Gly).

Figure S3. IR of CoNim-Gly and CoNi-Gly.

Figure S4. TG and DTG in argon flow of CoNim-Gly and CoNi-Gly.

Figure S5. TEM of CoNi.

Figure S6. HRTEM of CoNi.

Figure S7. TEM of CoNi-melamine with different Co/Ni ratio. Com and Nim are synthesized with only one metal source of cobalt and nickel respectively.

Figure S8. XRD of CoNim and CoNi.

Figure S9. The linear combination fitting (LCF) of XANES for CoNi which main component is metal.

Figure S10. The fine X-ray photoelectron spectroscopy (XPS) of CoNi and CoNim, fitting of O 1s. O_L is oxygen-metal in lattice, O_V is oxygen-metal in edge and interface, O_{OH-} and O_{H2O} are adsorbed oxygen from air.¹ Using lattice oxygen atoms (O_L and O_V) represent oxides content according to these fittings.

Name	CoNim	CoNi
С	45.53	49.90
Ο	35.43	26.71
Co	10.30	11.27
Ni	8.74	12.12

 Table S1. Elements concentration of CoNim and CoNi by XPS.

Figure S11. The XANES of Co K-edge for CoNim.

Figure S12. The XANES of Ni K-edge for CoNim.

Information of different Co/Ni ratio samples

Figure S13. XRD of Com and Nim.

Figure S14. RRDE tests for electron transfer number of Pt/C (a), IrO_2 (b), and RuO_2 (c).

Figure S15. LSV of IrO_2 (a) and RuO_2 (b) before and after 2000 cycle tests.

Figure S16. HRTEM of CoNim after OER stability test (washed from electrode).

Figure S17. HRTEM of CoNim after ORR stability test (washed from electrode).

Figure S18. Optimized adsorption structures of metal and metal oxides with (100) crystal faces.

Figure S19. Optimized OH adsorption structures of (100) crystal faces with composite clusters.

Figure S20. Optimized O₂ adsorption structures of (100) crystal faces with composite clusters.

Figure S21. Galvanostatic (at 10 mA/cm²) charge-discharge cycling curves for $Pt/C-IrO_2$ (a) and CoNim (b).

Figure S22. (a,b) Co 2p and Ni 2p XPS spectra of CoNim surface after OER stability test. In Co 2p and Ni 2p XPS, the surface Co, Co^{2+} and Ni, Ni^{2+} were oxidized to Co^{3+} and Ni^{3+} .

XAFS fit specific information.

Three paths from 1.10 Å to 2.85 Å (Co-O of Co₃O₄, Co-O of CoO, and Co-Co of Co metal) were used in Co k-edge adsorption spectrum fit, and three paths from 1.25 Å to 3.00 Å (Ni-O of NiO, Ni-Ni of Ni metal, Ni-Ni of NiO) were used in Ni k-edge adsorption spectrum fit. According to the principle and results of LCF, the following standard EXAFS formula can be used in absorption spectrum of mixed substances:

$$\chi(\mathbf{k}) = \sum_{j} \frac{N_{j} S_{0}^{2} f_{j}(k)}{k R_{j}^{2}} e^{-2k^{2} \sigma_{j}^{2}} e^{-2R_{j}/\lambda_{j}(k)} \sin[2k R_{j} + \delta_{j}(k) + 2\varphi_{c}(k)]$$

j=1, 2, 3 represent three paths mentioned above. N_j denotes the total number of atoms in the *j*-th shell. S_0^2 is the amplitude reduction factor. *R* is the distance between the absorbing and scattering atoms. $\lambda(k)$ is the mean free path of the excited photoelectron. f(k) and $\delta(k)$ are the backscattering amplitude and scattering phase shift of the scattering atom, respectively. $\varphi_C(k)$ is phase-shift of the absorbing atom. σ^2 known as the Debye-Waller factor, is the mean square variation in the interatomic distance R and $e^{-2k^2\sigma_j^2}$ term accounts for the effects of dynamic (thermal) vibration and configuration (structural) disorder which smear out the EXAFS oscillations at high k region. The N values obtained by fitting are multiplied by the ratio of the substance from LCF to obtain the atomic coordination number of each substance in the mixture.²

Reference

1. Xu, L.; Jiang, Q.; Xiao, Z.; Li, X.; Huo, J.; Wang, S.; Dai, L., Plasma-Engraved Co₃O₄ Nanosheets with Oxygen Vacancies and High Surface Area for the Oxygen Evolution Reaction. *Angew. Chem. Int. Ed.* **2016**, 55 (17), 5277-81.

2. Sun, Z.; Yan, W.; Yao, T.; Liu, Q.; Xie, Y.; Wei, S. XAFS in Dilute Magnetic Semiconductors. *Dalton T.* **2013**, 42, 13779-13801.