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Figure S1. XRD patterns of as-synthesized Co9S8 and Ga2S3



Figure S2. XRD pattern of CoGa2S4 and the corresponding Rietveld refinement.



Figure S3. XRD patterns of pristine CoGa2O4 and the product after sulfided under 500 ºC and 550 ºC, 

respectively.



Figure S4. The as-synthesized (a) CoGa2O4 and (b) CoGa2S4 powder.



X-ray photoelectron spectroscopy (XPS) analysis: the XPS survey spectrum (Figure S5a) confirms the 

existence of Co, Ga, S, C and O elements in the CoGa2S4@G. Co 2p spectrum fits well with two spin-orbit 

doublets (Figure S5b). Two peaks at 797.7 eV and 793.9 eV attribute to the binding energies of Co2+ and 

Co3+ for Co 2p1/2, respectively, while those arise at 781.8 eV and 778.5 eV are ascribed to the binding 

energies of Co2+ and Co3+ for Co 2p3/2, respectively. Peaks at 802.3 eV and 786.0 eV correspond to the 

shakeup satellites (noted as ‘Sat.’). Figure S5c shows two peaks at 1146.4 eV and 1119.2 eV, which attribute 

to the spin-orbit characteristics of Ga 2p1/2 and Ga 2p3/2, respectively. Two fitting peaks in Figure S5d with 

binding energies of 163.8 eV and 162.6 eV correspond well to S 2p1/2 and S 2p3/2, respectively.

Figure S5. (a)XPS survey spectrum of the CoGa2S4@G and high resolution XPS spectra of (b) Co 2p, (c) Ga 

2p and (d) S 2p.



Figure S6. Room temperature GDC profiles for the 2nd cycle of (a) CoGa2S4@G and (b) 

Na0.7[Mn0.6Ni0.2Mg0.2]O2 (NMN-2) half cells at 0.5 C, respectively.



Freezing resistance test of ether-based sodium ion batteries electrolyte: ~5 mL electrolyte was filled in a 

glass bottle sealed by black tape in glovebox with ultrahigh pure argon gas. The glass bottle was then put in 

low temperature test chamber, setting temperature to -60 ºC. After 100 h, the electrolyte in glass bottle still 

remained liquid. 

Figure S7. (a) After 100 h at -60 ºC in low temperature test chamber, the glass bottle filled with electrolyte is 

quickly took out from the chamber, (b) after tilting the glass bottle, electrolyte still shows as well fluidity as 

that at room temperature.



Figure S8. Comparison of rate capability at different temperatures with the reported anodes for (a) SIBs and 

(b) LIBs.S1-S9



Figure S9. dQ/dV profiles of GDC curves at 0.2 A g-1 for RT, 0 ºC, -20 ºC, -40 ºC, respectively.



Figure S10. EDX spectrum of the CoGa2S4@G electrode after (a) discharging to 0.05 V and (b) charging to 

2.70 V at -20 ºC, respectively.
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