Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Information

Inlay Ultrafine Ru Nanoparticles into Self-supported Ni(OH)₂ Nanoarray for Hydrogen Evolution with Low Overpotential and Enhanced Kinetics

Qian-Qian Chen,^{a,c} Xiao Yang,^a Chun-Chao Hou,^a Kai Li,^{*b} and Yong Chen^{* a,c}

^aKey Laboratory of Photochemical Conversion and Optoelectronic Materials & HKU-CAS Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China

^bShenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Xueyuan Blvd 1066, Shenzhen 518055, P. R. China

^cUniversity of Chinese Academy of Sciences, Beijing 100049, People's Republic of China

E-mail: chenyong@mail.ipc.ac.cn, kaili@szu.edu.cn *Corresponding Author

Experimental Section

Materials: All chemicals and solvents were obtained commercially and used without further purification.

Synthesis of the NiFe LDH/NF: NiFe LDH/NF was prepared as reported with urea as precipitant. In detail, 0.4 mmol Ni(OH)₂·6H₂O, 0.4 mmol Fe(OH)₃·9H₂O and 120 mg urea were dissolved into 15 mL water. Then the solution was transferred to a 25 mL Teflon-lined stainless-steel autoclave with a cleaned Ni foam (1 cm × 3 cm), which was sealed and maintained at 120 °C for 12 h in an electric oven, and then allowed to cool to room temperature to obtain NiFe LDH/NF.

Synthesis of the Ni(OH)₂/NF: A piece of Ni foam (1 cm × 3 cm) was immersed into a 15 mL solution containing 1 mM Ni(OH)₂· $6H_2O$ and 10 mM urea. Then the above solution was transferred to a 25 mL Teflon-lined stainless-steel autoclave, which was sealed and maintained at 120 °C for 12 h in an electric oven, and then allowed to cool to room temperature to obtain Ni(OH)₂/NF.

Synthesis of Ru NPs: 100 mg RuCl₃·xH₂O was dissolved in 5 mL H₂O which was recorded as solution A. Then, 10 mL NaBH₄ aqueous solution (containing 200 mg NaBH₄) was dropped into solution A slowly. The mixed solution was maintained at 100 °C for 2 h to obtain Ru NPs.

The preparation of Pt/C, Ru NPs and RuO₂ electrode: Typically, 25 mg commercial 10% Pt/C, Ru NPs or RuO₂ was dispersed in 1 mL mixture containing 500 μ L water, 440 μ L ethanol, 60 μ L Nafion solution, and then the mixture was sonicated for more than 1 h to generate an uniform catalyst ink. Next, 16 μ L of the dispersion was dropped onto 0.5 × 0.5 cm⁻² Ni foam (1.6 mg cm⁻²) carefully and dried at room temperature overnight to obtain Pt/C and RuO₂ electrode.

Fig. S1. Ni foam (left) and Ru/Ni(OH)₂/NF (right).

Fig. S2. EDS spectrum of $Ru/Ni(OH)_2$ scratched from the $Ru/Ni(OH)_2/NF$. Si peak is originated from Si substrate.

Fig. S3. Samples synthesized at different time scales. 10 min (a), 30 min (b), 1 h (c) and 3 h (d).

Fig. S4. Samples synthesized at different concentrations of $RuCl_3$ solution. 1.0 mM (a), 2.5 mM (b), 5.0 mM (c), 15.0 mM (d).

Fig. S5. Samples synthesized under Ar atmosphere.

Fig. S6. High resolution XPS of $Ru/Ni(OH)_2$, $Ni(OH)_2$ and Ru NPs. (a) Ni 2p, (b) O 1s, (c) Ru 3d.

Fig. S7. (a-c) SEM images and (d) XRD pattern of Ni(OH)₂/NF.

Fig. S8. XPS spectra of Ni(OH)₂.

Fig. S9. CV curves for the as-prepared Ru/Ni(OH)₂/NF (a), Ru NPs/NF (b) and Ni(OH)₂/NF (c).

Fig. S10. (a) TEM image of $Ru/Ni(OH)_2$ after 20 h HER at 20 mA cm⁻², (b) the size distribution of Ru NPs in (a).

Fig. S11. SEM images of $Ru/Ni(OH)_2/NF$ after HER at 20 mA cm⁻² for 20 h.

Fig. S12. SEM-mapping of Ru/Ni(OH)₂/NF after HER at 20 mA cm⁻² for 20 h.

Fig. S14. SEM image (a) and XRD pattern (b) for NiFe LDH/NF.

Fig. S15. LSV curves (a) and EIS spectra (b) for NiFe LDH/NF and RuO₂/NF.

Fig. S16. (a) Chronopotentionmetry test at 50 mA cm⁻² for NiFe LDH/NF. (b) SEM image of NiFe LDH/NFafterOERat50mAcm⁻²for20h.

Concentration of RuCl ₃ solution	pH value
1.0 mM	4.00
2.5 mM	2.29
5.0 mM	2.09
15.0 mM	1.76

Table S1. pH values of solutions with different RuCl_3 concertrations.